These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23897579)

  • 1. High-throughput analysis of in vivo protein stability.
    Kim I; Miller CR; Young DL; Fields S
    Mol Cell Proteomics; 2013 Nov; 12(11):3370-8. PubMed ID: 23897579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization.
    Lenk U; Sommer T
    J Biol Chem; 2000 Dec; 275(50):39403-10. PubMed ID: 10991948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into binding cooperativity of MATa1/MATalpha2 from the crystal structure of a MATa1 homeodomain-maltose binding protein chimera.
    Ke A; Wolberger C
    Protein Sci; 2003 Feb; 12(2):306-12. PubMed ID: 12538894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates.
    Zattas D; Adle DJ; Rubenstein EM; Hochstrasser M
    Mol Biol Cell; 2013 Apr; 24(7):890-900. PubMed ID: 23363603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The short-lived Matalpha2 transcriptional repressor is protected from degradation in vivo by interactions with its corepressors Tup1 and Ssn6.
    Laney JD; Mobley EF; Hochstrasser M
    Mol Cell Biol; 2006 Jan; 26(1):371-80. PubMed ID: 16354707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A possible mechanism for partitioning between homo- and heterodimerization of the yeast homeodomain proteins MATa1 and MATalpha2.
    Ho CY; Smith M; Houston ME; Adamson JG; Hodges RS
    J Pept Res; 2002 Jan; 59(1):34-43. PubMed ID: 11906605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain.
    Du F; Navarro-Garcia F; Xia Z; Tasaki T; Varshavsky A
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14110-5. PubMed ID: 12391316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization of the yeast MATalpha2/MCM1/DNA ternary complex: general methods and principles for protein/DNA cocrystallization.
    Tan S; Hunziker Y; Pellegrini L; Richmond TJ
    J Mol Biol; 2000 Apr; 297(4):947-59. PubMed ID: 10736229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A trans-acting peptide activates the yeast a1 repressor by raising its DNA-binding affinity.
    Stark MR; Escher D; Johnson AD
    EMBO J; 1999 Mar; 18(6):1621-9. PubMed ID: 10075932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.
    Malcov M; Cesarkas K; Stelzer G; Shalom S; Dicken Y; Naor Y; Goldstein RS; Sagee S; Kassir Y; Don J
    Dev Biol; 2004 Dec; 276(1):111-23. PubMed ID: 15531368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four hydrophobic amino acid residues in the C-terminal effector domain of the yeast Mig1p repressor are important for its in vivo activity.
    Ostling J; Cassart JP; Vandenhaute J; Ronne H
    Mol Gen Genet; 1998 Nov; 260(2-3):269-79. PubMed ID: 9862481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered improvements in DNA-binding function of the MATa1 homeodomain reveal structural changes involved in combinatorial control.
    Hart B; Mathias JR; Ott D; McNaughton L; Anderson JS; Vershon AK; Baxter SM
    J Mol Biol; 2002 Feb; 316(2):247-56. PubMed ID: 11851335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth-based determination and biochemical confirmation of genetic requirements for protein degradation in Saccharomyces cerevisiae.
    Watts SG; Crowder JJ; Coffey SZ; Rubenstein EM
    J Vis Exp; 2015 Feb; (96):e52428. PubMed ID: 25742191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular control of transcriptional activity by the NK2-specific domain in NK-2 homeodomain proteins.
    Watada H; Mirmira RG; Kalamaras J; German MS
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9443-8. PubMed ID: 10944215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of intragenic tandem repeats in unit C of FLO1 of Saccharomyces cerevisiae increases the conformational stability of flocculin under acidic and alkaline conditions.
    Li E; Yue F; Chang Q; Guo X; He X; Zhang B
    PLoS One; 2013; 8(1):e53428. PubMed ID: 23308221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation.
    Swanson R; Locher M; Hochstrasser M
    Genes Dev; 2001 Oct; 15(20):2660-74. PubMed ID: 11641273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering the DNA-binding specificity of the yeast Matalpha 2 homeodomain protein.
    Mathias JR; Zhong H; Jin Y; Vershon AK
    J Biol Chem; 2001 Aug; 276(35):32696-703. PubMed ID: 11438530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis.
    Guy MP; Young DL; Payea MJ; Zhang X; Kon Y; Dean KM; Grayhack EJ; Mathews DH; Fields S; Phizicky EM
    Genes Dev; 2014 Aug; 28(15):1721-32. PubMed ID: 25085423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast two-hybrid screening.
    Maple J; Møller SG
    Methods Mol Biol; 2007; 362():207-23. PubMed ID: 17417012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.