These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 23897722)

  • 41. A novel method to measure diffusion coefficients in porous metal-organic frameworks.
    Zybaylo O; Shekhah O; Wang H; Tafipolsky M; Schmid R; Johannsmann D; Wöll C
    Phys Chem Chem Phys; 2010 Jul; 12(28):8092-7. PubMed ID: 20532258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substrate-free growth, characterization and growth mechanism of ZnO nanorod close-packed arrays.
    Yang Z; Liu Q; Yu H; Zou B; Wang Y; Wang TH
    Nanotechnology; 2008 Jan; 19(3):035704. PubMed ID: 21817589
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Separation of styrene and ethylbenzene on metal-organic frameworks: analogous structures with different adsorption mechanisms.
    Maes M; Vermoortele F; Alaerts L; Couck S; Kirschhock CE; Denayer JF; De Vos DE
    J Am Chem Soc; 2010 Nov; 132(43):15277-85. PubMed ID: 20942418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents.
    Petit C; Bandosz TJ
    Dalton Trans; 2012 Apr; 41(14):4027-35. PubMed ID: 22353854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays.
    Ma T; Guo M; Zhang M; Zhang Y; Wang X
    Nanotechnology; 2007 Jan; 18(3):035605. PubMed ID: 19636128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays.
    Chen T; Li X; Qiu C; Zhu W; Ma H; Chen S; Meng O
    Biosens Bioelectron; 2014 Mar; 53():200-6. PubMed ID: 24140837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective growth of ZnO nanorods on hydrophobic Si nanorod arrays.
    Lu MY; Wang YJ; Hong MH; Chiu CY; You SJ; Lu MP
    Nanotechnology; 2015 Feb; 26(5):055604. PubMed ID: 25590263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling the effect of structural changes during dynamic separation processes on MOFs.
    Remy T; Baron GV; Denayer JF
    Langmuir; 2011 Nov; 27(21):13064-71. PubMed ID: 21923100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure.
    Wei Y; Ke L; Leong ES; Liu H; Liew LL; Teng JH; Du H; Sun XW
    Nanotechnology; 2012 Sep; 23(36):365704. PubMed ID: 22910379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape.
    Yang K; Sun Q; Xue F; Lin D
    J Hazard Mater; 2011 Nov; 195():124-31. PubMed ID: 21871718
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.
    Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G
    Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates.
    Chen B; Meng G; Huang Q; Huang Z; Xu Q; Zhu C; Qian Y; Ding Y
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15667-75. PubMed ID: 25162796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microporous brookite-phase titania made by replication of a metal-organic framework.
    Hall AS; Kondo A; Maeda K; Mallouk TE
    J Am Chem Soc; 2013 Nov; 135(44):16276-9. PubMed ID: 24134476
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes.
    Yan AX; Yao S; Li YG; Zhang ZM; Lu Y; Chen WL; Wang EB
    Chemistry; 2014 Jun; 20(23):6927-33. PubMed ID: 24737342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microporous metal-organic frameworks for gas separation.
    Li B; Wang H; Chen B
    Chem Asian J; 2014 Jun; 9(6):1474-98. PubMed ID: 24668618
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Green scalable aerosol synthesis of porous metal-organic frameworks.
    Garcia Marquez A; Horcajada P; Grosso D; Ferey G; Serre C; Sanchez C; Boissiere C
    Chem Commun (Camb); 2013 May; 49(37):3848-50. PubMed ID: 23549257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation.
    Mao Y; shi L; Huang H; Cao W; Li J; Sun L; Jin X; Peng X
    Chem Commun (Camb); 2013 Jun; 49(50):5666-8. PubMed ID: 23682358
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation.
    Zhu X; Tian C; Mahurin SM; Chai SH; Wang C; Brown S; Veith GM; Luo H; Liu H; Dai S
    J Am Chem Soc; 2012 Jun; 134(25):10478-84. PubMed ID: 22631446
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MOF thin films: existing and future applications.
    Shekhah O; Liu J; Fischer RA; Wöll Ch
    Chem Soc Rev; 2011 Feb; 40(2):1081-106. PubMed ID: 21225034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.