These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23897890)

  • 1. The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p.
    Shen D; Yuan H; Hutagalung A; Verma A; Kümmel D; Wu X; Reinisch K; McNew JA; Novick P
    J Cell Biol; 2013 Aug; 202(3):509-26. PubMed ID: 23897890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional specialization within a vesicle tethering complex: bypass of a subset of exocyst deletion mutants by Sec1p or Sec4p.
    Wiederkehr A; De Craene JO; Ferro-Novick S; Novick P
    J Cell Biol; 2004 Dec; 167(5):875-87. PubMed ID: 15583030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p.
    Boyd C; Hughes T; Pypaert M; Novick P
    J Cell Biol; 2004 Dec; 167(5):889-901. PubMed ID: 15583031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly.
    Luo G; Zhang J; Guo W
    Mol Biol Cell; 2014 Nov; 25(23):3813-22. PubMed ID: 25232005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rab exchange factor Sec2p reversibly associates with the exocyst.
    Medkova M; France YE; Coleman J; Novick P
    Mol Biol Cell; 2006 Jun; 17(6):2757-69. PubMed ID: 16611746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis.
    Guo W; Roth D; Walch-Solimena C; Novick P
    EMBO J; 1999 Feb; 18(4):1071-80. PubMed ID: 10022848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex.
    Jin Y; Sultana A; Gandhi P; Franklin E; Hamamoto S; Khan AR; Munson M; Schekman R; Weisman LS
    Dev Cell; 2011 Dec; 21(6):1156-70. PubMed ID: 22172676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1.
    Morgera F; Sallah MR; Dubuke ML; Gandhi P; Brewer DN; Carr CM; Munson M
    Mol Biol Cell; 2012 Jan; 23(2):337-46. PubMed ID: 22114349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Exocyst Subunit Sec6 Interacts with Assembled Exocytic SNARE Complexes.
    Dubuke ML; Maniatis S; Shaffer SA; Munson M
    J Biol Chem; 2015 Nov; 290(47):28245-28256. PubMed ID: 26446795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p.
    Sivaram MV; Saporita JA; Furgason ML; Boettcher AJ; Munson M
    Biochemistry; 2005 Apr; 44(16):6302-11. PubMed ID: 15835919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sec6p anchors the assembled exocyst complex at sites of secretion.
    Songer JA; Munson M
    Mol Biol Cell; 2009 Feb; 20(3):973-82. PubMed ID: 19073882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclical regulation of the exocyst and cell polarity determinants for polarized cell growth.
    Zajac A; Sun X; Zhang J; Guo W
    Mol Biol Cell; 2005 Mar; 16(3):1500-12. PubMed ID: 15647373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The beta subunit of the Sec61p endoplasmic reticulum translocon interacts with the exocyst complex in Saccharomyces cerevisiae.
    Toikkanen JH; Miller KJ; Söderlund H; Jäntti J; Keränen S
    J Biol Chem; 2003 Jun; 278(23):20946-53. PubMed ID: 12665530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis.
    Novick P; Medkova M; Dong G; Hutagalung A; Reinisch K; Grosshans B
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):683-6. PubMed ID: 17052174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An internal domain of Exo70p is required for actin-independent localization and mediates assembly of specific exocyst components.
    Hutagalung AH; Coleman J; Pypaert M; Novick PJ
    Mol Biol Cell; 2009 Jan; 20(1):153-63. PubMed ID: 18946089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases.
    Rossi G; Lepore D; Kenner L; Czuchra AB; Plooster M; Frost A; Munson M; Brennwald P
    J Cell Biol; 2020 Feb; 219(2):. PubMed ID: 31904797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promiscuity in Rab-SNARE interactions.
    Grote E; Novick PJ
    Mol Biol Cell; 1999 Dec; 10(12):4149-61. PubMed ID: 10588649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-EM structure of the exocyst complex.
    Mei K; Li Y; Wang S; Shao G; Wang J; Ding Y; Luo G; Yue P; Liu JJ; Wang X; Dong MQ; Wang HW; Guo W
    Nat Struct Mol Biol; 2018 Feb; 25(2):139-146. PubMed ID: 29335562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric tethering by exocyst in vitro requires a Rab GTPase, an R-SNARE and a Sac1-sensitive phosphoinositide lipid.
    Rossi G; Puller GC; Brennwald P
    Mol Biol Cell; 2024 Mar; 35(3):br8. PubMed ID: 38198574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane targeting of the yeast exocyst complex.
    Pleskot R; Cwiklik L; Jungwirth P; Žárský V; Potocký M
    Biochim Biophys Acta; 2015 Jul; 1848(7):1481-9. PubMed ID: 25838123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.