These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23898181)

  • 1. Lipid bilayer and cytoskeletal interactions in a red blood cell.
    Peng Z; Li X; Pivkin IV; Dao M; Karniadakis GE; Suresh S
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13356-61. PubMed ID: 23898181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.
    Chang HY; Li X; Li H; Karniadakis GE
    PLoS Comput Biol; 2016 Oct; 12(10):e1005173. PubMed ID: 27792725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stiffening of Red Blood Cells Induced by Cytoskeleton Disorders: A Joint Theory-Experiment Study.
    Lai L; Xu X; Lim CT; Cao J
    Biophys J; 2015 Dec; 109(11):2287-94. PubMed ID: 26636940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite.
    Zhang Y; Huang C; Kim S; Golkaram M; Dixon MW; Tilley L; Li J; Zhang S; Suresh S
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6068-73. PubMed ID: 25918423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model.
    Li X; Peng Z; Lei H; Dao M; Karniadakis GE
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale modeling of red blood cell mechanics and blood flow in malaria.
    Fedosov DA; Lei H; Caswell B; Suresh S; Karniadakis GE
    PLoS Comput Biol; 2011 Dec; 7(12):e1002270. PubMed ID: 22144878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling.
    Dodson WR; Dimitrakopoulos P
    Biophys J; 2010 Nov; 99(9):2906-16. PubMed ID: 21044588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects for Human Erythrocyte Skeleton-Bilayer Dissociation during Splenic Flow.
    Zhu Q; Salehyar S; Cabrales P; Asaro RJ
    Biophys J; 2017 Aug; 113(4):900-912. PubMed ID: 28834726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective cell membrane tension protects red blood cells against malaria invasion.
    Alimohamadi H; Rangamani P
    PLoS Comput Biol; 2023 Dec; 19(12):e1011694. PubMed ID: 38048346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full dynamics of a red blood cell in shear flow.
    Dupire J; Socol M; Viallat A
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20808-13. PubMed ID: 23213229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoskeletal dynamics of human erythrocyte.
    Li J; Lykotrafitis G; Dao M; Suresh S
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):4937-42. PubMed ID: 17360346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of red blood cell mechanics during morphological changes.
    Park Y; Best CA; Badizadegan K; Dasari RR; Feld MS; Kuriabova T; Henle ML; Levine AJ; Popescu G
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6731-6. PubMed ID: 20351261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation.
    Fedosov DA; Caswell B; Suresh S; Karniadakis GE
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):35-9. PubMed ID: 21173269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ; Kalluri RM; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing eukaryotic cell mechanics via mesoscopic simulations.
    Lykov K; Nematbakhsh Y; Shang M; Lim CT; Pivkin IV
    PLoS Comput Biol; 2017 Sep; 13(9):e1005726. PubMed ID: 28922399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate coarse-grained modeling of red blood cells.
    Pivkin IV; Karniadakis GE
    Phys Rev Lett; 2008 Sep; 101(11):118105. PubMed ID: 18851338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.