BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23898217)

  • 1. Role of forefinger and thumb loops in production of Ψ54 and Ψ55 in tRNAs by archaeal Pus10.
    Joardar A; Jana S; Fitzek E; Gurha P; Majumder M; Chatterjee K; Geisler M; Gupta R
    RNA; 2013 Sep; 19(9):1279-94. PubMed ID: 23898217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue.
    Deogharia M; Mukhopadhyay S; Joardar A; Gupta R
    RNA; 2019 Mar; 25(3):336-351. PubMed ID: 30530625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA.
    Gurha P; Gupta R
    RNA; 2008 Dec; 14(12):2521-7. PubMed ID: 18952823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA.
    Chatterjee K; Blaby IK; Thiaville PC; Majumder M; Grosjean H; Yuan YA; Gupta R; de Crécy-Lagard V
    RNA; 2012 Mar; 18(3):421-33. PubMed ID: 22274953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudouridine formation in archaeal RNAs: The case of Haloferax volcanii.
    Blaby IK; Majumder M; Chatterjee K; Jana S; Grosjean H; de Crécy-Lagard V; Gupta R
    RNA; 2011 Jul; 17(7):1367-80. PubMed ID: 21628430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10.
    Fitzek E; Joardar A; Gupta R; Geisler M
    J Mol Evol; 2018 Jan; 86(1):77-89. PubMed ID: 29349599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian nuclear TRUB1, mitochondrial TRUB2, and cytoplasmic PUS10 produce conserved pseudouridine 55 in different sets of tRNA.
    Mukhopadhyay S; Deogharia M; Gupta R
    RNA; 2021 Jan; 27(1):66-79. PubMed ID: 33023933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of the conserved pseudouridine at position 55 in archaeal tRNA.
    Roovers M; Hale C; Tricot C; Terns MP; Terns RM; Grosjean H; Droogmans L
    Nucleic Acids Res; 2006; 34(15):4293-301. PubMed ID: 16920741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential roles of archaeal box H/ACA proteins in guide RNA-dependent and independent pseudouridine formation.
    Gurha P; Joardar A; Chaurasia P; Gupta R
    RNA Biol; 2007 Oct; 4(2):101-9. PubMed ID: 17993784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein.
    Fujikane R; Behm-Ansmant I; Tillault AS; Loegler C; Igel-Bourguignon V; Marguet E; Forterre P; Branlant C; Motorin Y; Charpentier B
    Sci Rep; 2018 Sep; 8(1):13815. PubMed ID: 30218085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:Psi55-synthase and RNA-guided RNA:Psi-synthase activities.
    Muller S; Fourmann JB; Loegler C; Charpentier B; Branlant C
    Nucleic Acids Res; 2007; 35(16):5610-24. PubMed ID: 17704128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of human Pus10, a novel pseudouridine synthase.
    McCleverty CJ; Hornsby M; Spraggon G; Kreusch A
    J Mol Biol; 2007 Nov; 373(5):1243-54. PubMed ID: 17900615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA binding, positioning, and modification by the pseudouridine synthase Pus10.
    Kamalampeta R; Keffer-Wilkes LC; Kothe U
    J Mol Biol; 2013 Oct; 425(20):3863-74. PubMed ID: 23743107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation.
    Majumder M; Bosmeny MS; Gupta R
    RNA; 2016 Oct; 22(10):1604-19. PubMed ID: 27539785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Ψ55 in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro.
    Jia Z; Meng F; Chen H; Zhu G; Li X; He Y; Zhang L; He X; Zhan H; Chen M; Ji Y; Wang M; Guan MX
    Nucleic Acids Res; 2022 Sep; 50(16):9368-9381. PubMed ID: 36018806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs.
    Becker HF; Motorin Y; Planta RJ; Grosjean H
    Nucleic Acids Res; 1997 Nov; 25(22):4493-9. PubMed ID: 9358157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme.
    Hoang C; Ferré-D'Amaré AR
    Cell; 2001 Dec; 107(7):929-39. PubMed ID: 11779468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic characterization and mutational studies of TruD--the fifth family of pseudouridine synthases.
    Chan CM; Huang RH
    Arch Biochem Biophys; 2009 Sep; 489(1-2):15-9. PubMed ID: 19664587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis.
    Wright JR; Keffer-Wilkes LC; Dobing SR; Kothe U
    RNA; 2011 Dec; 17(12):2074-84. PubMed ID: 21998096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.