BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23898547)

  • 1. Interaction between cochleata and stipule-reduced mutations results in exstipulate hypertrophied leaves in Pisum sativum L.
    Kumar A; Sharma V; Kumar S
    Indian J Exp Biol; 2013 Jul; 51(7):492-501. PubMed ID: 23898547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin transport inhibitor induced low complexity petiolated leaves and sessile leaf-like stipules and architectures of heritable leaf and stipule mutants in Pisum sativum suggest that its simple lobed stipules and compound leaf represent ancestral forms in angiosperms.
    Kumar A; Sharma V; Khan M; Hindala MR; Kumar S
    J Genet; 2013 Apr; 92(1):25-61. PubMed ID: 23640405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pisum sativum wild-type and mutant stipules and those induced by an auxin transport inhibitor demonstrate the entire diversity of laminated stipules observed in angiosperms.
    Kumar A; Sharma V; Khan M; Tripathi BN; Kumar S
    Protoplasma; 2013 Feb; 250(1):223-34. PubMed ID: 22456952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [New allele of the COCHLEATA gene in pea Pisum sativum L].
    Siniushin AA; Khartina GA; Gostimskiĭ SA
    Genetika; 2011 Dec; 47(12):1604-10. PubMed ID: 22384688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic interaction and mapping studies on the leaflet development (lld) mutant in Pisum sativum.
    Kumar S; Mishra RK; Kumar A; Chaudhary S; Sharma V; Kumari R
    J Genet; 2012; 91(3):325-42. PubMed ID: 23271018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Stipules reduced, a leaf morphology gene in pea (Pisum sativum).
    Moreau C; Hofer JMI; Eléouët M; Sinjushin A; Ambrose M; Skøt K; Blackmore T; Swain M; Hegarty M; Balanzà V; Ferrándiz C; Ellis THN
    New Phytol; 2018 Oct; 220(1):288-299. PubMed ID: 29974468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of stipule development by COCHLEATA and STIPULE-REDUCED genes in pea Pisum sativum.
    Kumar S; Mishra RK; Kumar A; Srivastava S; Chaudhary S
    Planta; 2009 Aug; 230(3):449-58. PubMed ID: 19488780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COCHLEATA controls leaf size and secondary inflorescence architecture via negative regulation of UNIFOLIATA (LEAFY ortholog) gene in garden pea Pisum sativum.
    Sharma V; Chaudhary S; Kumar A; Kumar S
    J Biosci; 2012 Dec; 37(6):1041-59. PubMed ID: 23151794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auxin-cytokinin and auxin-gibberellin interactions during morphogenesis of the compound leaves of pea (Pisum sativum).
    DeMason DA
    Planta; 2005 Sep; 222(1):151-66. PubMed ID: 15809864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles for auxin during morphogenesis of the compound leaves of pea ( Pisum sativum).
    DeMason DA; Chawla R
    Planta; 2004 Jan; 218(3):435-48. PubMed ID: 12942326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, cochleata, afila, and tendril-lessn.
    Gourlay CW; Hofer JM; Ellis TH
    Plant Cell; 2000 Aug; 12(8):1279-94. PubMed ID: 10948249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development.
    Tattersall AD; Turner L; Knox MR; Ambrose MJ; Ellis TH; Hofer JM
    Plant Cell; 2005 Apr; 17(4):1046-60. PubMed ID: 15749758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of stipule requires the coordinated actions of the legume orthologs of Arabidopsis BLADE-ON-PETIOLE and LEAFY.
    Zhang J; Wang X; Han L; Zhang J; Xie Y; Li J; Wang ZY; Wen J; Mysore KS; Zhou C
    New Phytol; 2022 Nov; 236(4):1512-1528. PubMed ID: 36031740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unifoliata-Afila interactions in pea leaf morphogenesis.
    Demason DA; Chetty V; Barkawi LS; Liu X; Cohen JD
    Am J Bot; 2013 Mar; 100(3):478-95. PubMed ID: 23400494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of vascular system in the compound tendrilled afila leaf in Pisum sativum.
    Sharma V; Kumar A; Kumar S
    Indian J Exp Biol; 2014 Jun; 52(6):664-8. PubMed ID: 24956898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between GA, auxin, and UNI expression controlling shoot ontogeny, leaf morphogenesis, and auxin response in Pisum sativum (Fabaceae): or how the uni-tac mutant is rescued.
    DeMason DA; Chetty VJ
    Am J Bot; 2011 May; 98(5):775-91. PubMed ID: 21613058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic characterization of the CRISPA (ARP gene) mutant of pea (Pisum sativum; Fabaceae): a reevaluation.
    DeMason DA; Chetty V
    Am J Bot; 2014 Mar; 101(3):408-27. PubMed ID: 24638162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptional co-regulators NBCL1 and NBCL2 redundantly coordinate aerial organ development and root nodule identity in legumes.
    Liu S; Magne K; Zhou J; Laude J; Dalmais M; Le Signor C; Bendahmane A; Thompson R; Couzigou JM; Ratet P
    J Exp Bot; 2023 Jan; 74(1):194-213. PubMed ID: 36197099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic control of leaf-blade morphogenesis by the INSECATUS gene in Pisum sativum.
    Kumar S; Chaudhary S; Sharma V; Kumari R; Mishra RK; Kumar A; Choudhury DR; Jha R; Priyadarshini A; Kumar A
    J Genet; 2010 Aug; 89(2):201-11. PubMed ID: 20861571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of LLD, a new locus for leaflet/pinna morphogenesis in Pisum sativum.
    Prajapati S; Kumar S
    J Biosci; 2001 Dec; 26(5):607-25. PubMed ID: 11807291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.