BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23898824)

  • 1. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1.
    Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD
    ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin.
    Spence EM; Calvo-Bado L; Mines P; Bugg TDH
    Microb Cell Fact; 2021 Jan; 20(1):15. PubMed ID: 33468127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase.
    Ahmad M; Roberts JN; Hardiman EM; Singh R; Eltis LD; Bugg TD
    Biochemistry; 2011 Jun; 50(23):5096-107. PubMed ID: 21534568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and
    Spence EM; Scott HT; Dumond L; Calvo-Bado L; di Monaco S; Williamson JJ; Persinoti GF; Squina FM; Bugg TDH
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32737130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanillin catabolism in Rhodococcus jostii RHA1.
    Chen HP; Chow M; Liu CC; Lau A; Liu J; Eltis LD
    Appl Environ Microbiol; 2012 Jan; 78(2):586-8. PubMed ID: 22057861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Thiamine Diphosphate-Dependent 4-Hydroxybenzoylformate Decarboxylase Enzymes from
    Wei Z; Wilkinson RC; Rashid GMM; Brown D; Fülöp V; Bugg TDH
    Biochemistry; 2019 Dec; 58(52):5281-5293. PubMed ID: 30946572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of
    Yasin R; Rashid GMM; Ali I; Bugg TDH
    Heliyon; 2023 Sep; 9(9):e19511. PubMed ID: 37810037
    [No Abstract]   [Full Text] [Related]  

  • 8. The catabolism of lignin-derived
    Wolf ME; Lalande AT; Newman BL; Bleem AC; Palumbo CT; Beckham GT; Eltis LD
    Appl Environ Microbiol; 2024 Mar; 90(3):e0215523. PubMed ID: 38380926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases.
    Sainsbury PD; Mineyeva Y; Mycroft Z; Bugg TD
    Bioorg Chem; 2015 Jun; 60():102-9. PubMed ID: 25984987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of microbial lignin degradation pathways using synthetic isotope-labelled lignin.
    Alruwaili A; Rashid GMM; Sodré V; Mason J; Rehman Z; Menakath AK; Cheung D; Brown SP; Bugg TDH
    RSC Chem Biol; 2023 Jan; 4(1):47-55. PubMed ID: 36685258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin.
    Saikia K; Vishnu D; Rathankumar AK; Palanisamy Athiyaman B; Batista-García RA; Folch-Mallol JL; Cabana H; Kumar VV
    J Air Waste Manag Assoc; 2020 Dec; 70(12):1252-1259. PubMed ID: 32701040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin.
    Fetherolf MM; Levy-Booth DJ; Navas LE; Liu J; Grigg JC; Wilson A; Katahira R; Beckham GT; Mohn WW; Eltis LD
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25771-25778. PubMed ID: 32989155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin.
    Yang Y; Song WY; Hur HG; Kim TY; Ghatge S
    Int J Biol Macromol; 2019 Mar; 124():200-208. PubMed ID: 30448497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production.
    Xiong X; Lian J; Yu X; Garcia-Perez M; Chen S
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1551-1560. PubMed ID: 27558782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine tuning of Cd
    Xu J; Li M; Qiu J; Zhang XF; Yao J
    Int J Biol Macromol; 2021 Aug; 185():297-305. PubMed ID: 34166691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1.
    Atago Y; Shimodaira J; Araki N; Bin Othman N; Zakaria Z; Fukuda M; Futami J; Hara H
    Biosci Biotechnol Biochem; 2016 May; 80(5):1012-9. PubMed ID: 26828632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders.
    Ahmad M; Taylor CR; Pink D; Burton K; Eastwood D; Bending GD; Bugg TD
    Mol Biosyst; 2010 May; 6(5):815-21. PubMed ID: 20567767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mycofactocin-associated dehydrogenase is essential for ethylene glycol metabolism by Rhodococcus jostii RHA1.
    Shimizu T; Suzuki K; Inui M
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):58. PubMed ID: 38175243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the metabolic distribution of vanillin in Rhodococcus opacus during lignin valorization.
    Zhou H; Xu Z; Cai C; Li J; Jin M
    Bioresour Technol; 2022 Mar; 347():126348. PubMed ID: 34798253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.