These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers. Tarek M; Maigret B; Chipot C Biophys J; 2003 Oct; 85(4):2287-98. PubMed ID: 14507693 [TBL] [Abstract][Full Text] [Related]
5. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control. Calvelo M; Granja JR; Garcia-Fandino R Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191 [TBL] [Abstract][Full Text] [Related]
6. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. Calvelo M; Lynch CI; Granja JR; Sansom MSP; Garcia-Fandiño R ACS Nano; 2021 Apr; 15(4):7053-7064. PubMed ID: 33739081 [TBL] [Abstract][Full Text] [Related]
7. Imaging Proton Transport in Giant Vesicles through Cyclic Peptide-Polymer Conjugate Nanotube Transmembrane Ion Channels. Binfield JG; Brendel JC; Cameron NR; Eissa AM; Perrier S Macromol Rapid Commun; 2018 Oct; 39(19):e1700831. PubMed ID: 29450934 [TBL] [Abstract][Full Text] [Related]
8. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Gong B; Shao Z Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055 [TBL] [Abstract][Full Text] [Related]
9. From natural to bioassisted and biomimetic artificial water channel systems. Barboiu M; Gilles A Acc Chem Res; 2013 Dec; 46(12):2814-23. PubMed ID: 23566356 [TBL] [Abstract][Full Text] [Related]
10. Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies. Sánchez-Quesada J; Isler MP; Ghadiri MR J Am Chem Soc; 2002 Aug; 124(34):10004-5. PubMed ID: 12188661 [TBL] [Abstract][Full Text] [Related]
11. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chapman R; Danial M; Koh ML; Jolliffe KA; Perrier S Chem Soc Rev; 2012 Sep; 41(18):6023-41. PubMed ID: 22875035 [TBL] [Abstract][Full Text] [Related]
12. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes. Brea RJ; Reiriz C; Granja JR Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes. Calvelo M; Vázquez S; García-Fandiño R Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433 [TBL] [Abstract][Full Text] [Related]
14. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity. De Riccardis F; Izzo I; Montesarchio D; Tecilla P Acc Chem Res; 2013 Dec; 46(12):2781-90. PubMed ID: 23534613 [TBL] [Abstract][Full Text] [Related]
17. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities. Si W; Xin P; Li ZT; Hou JL Acc Chem Res; 2015 Jun; 48(6):1612-9. PubMed ID: 26017272 [TBL] [Abstract][Full Text] [Related]
18. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes. Chen J; Zhang B; Xia F; Xie Y; Jiang S; Su R; Lu Y; Wu W Nanoscale; 2016 Apr; 8(13):7127-36. PubMed ID: 26964879 [TBL] [Abstract][Full Text] [Related]
19. Electrophoretic Transport of Na(+) and K(+) Ions Within Cyclic Peptide Nanotubes. Carvajal-Diaz JA; Cagin T J Phys Chem B; 2016 Aug; 120(32):7872-9. PubMed ID: 27448165 [TBL] [Abstract][Full Text] [Related]
20. Ion current calculations based on three dimensional Poisson-Nernst-Planck theory for a cyclic peptide nanotube. Hwang H; Schatz GC; Ratner MA J Phys Chem B; 2006 Apr; 110(13):6999-7008. PubMed ID: 16571014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]