These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23898953)

  • 1. Control over the number density and diameter of GaAs nanowires on Si(111) mediated by droplet epitaxy.
    Somaschini C; Bietti S; Trampert A; Jahn U; Hauswald C; Riechert H; Sanguinetti S; Geelhaar L
    Nano Lett; 2013 Aug; 13(8):3607-13. PubMed ID: 23898953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111).
    Hakkarainen TV; Schramm A; Mäkelä J; Laukkanen P; Guina M
    Nanotechnology; 2015 Jul; 26(27):275301. PubMed ID: 26087248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography.
    Munshi AM; Dheeraj DL; Fauske VT; Kim DC; Huh J; Reinertsen JF; Ahtapodov L; Lee KD; Heidari B; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2014 Feb; 14(2):960-6. PubMed ID: 24467394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy.
    Yu X; Li L; Wang H; Xiao J; Shen C; Pan D; Zhao J
    Nanoscale; 2016 May; 8(20):10615-21. PubMed ID: 27194599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wurtzite phase control for self-assisted GaAs nanowires grown by molecular beam epitaxy.
    Dursap T; Vettori M; Botella C; Regreny P; Blanchard N; Gendry M; Chauvin N; Bugnet M; Danescu A; Penuelas J
    Nanotechnology; 2021 Apr; 32(15):155602. PubMed ID: 33429384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GaAs/GaAsPBi core-shell nanowires grown by molecular beam epitaxy.
    Himwas C; Yordsri V; Thanachayanont C; Tchernycheva M; Panyakeow S; Kanjanachuchai S
    Nanotechnology; 2021 Dec; 33(9):. PubMed ID: 34781278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the Ga flux incidence angle on the growth kinetics of self-assisted GaAs nanowires on Si(111).
    Vettori M; Danescu A; Guan X; Regreny P; Penuelas J; Gendry M
    Nanoscale Adv; 2019 Nov; 1(11):4433-4441. PubMed ID: 36134421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly uniform zinc blende GaAs nanowires on Si(111) using a controlled chemical oxide template.
    Tan SL; Genuist Y; den Hertog MI; Bellet-Amalric E; Mariette H; Pelekanos NT
    Nanotechnology; 2017 Jun; 28(25):255602. PubMed ID: 28475104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of long III-As NWs by hydride vapor phase epitaxy.
    Gil E; Andre Y
    Nanotechnology; 2021 Apr; 32(16):162002. PubMed ID: 33434903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Investigation of Uniform Ensembles of Self-Catalyzed GaAs Nanowires Fabricated by a Lithography-Free Technique.
    Koivusalo E; Hakkarainen T; Guina M
    Nanoscale Res Lett; 2017 Dec; 12(1):192. PubMed ID: 28314359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformal Growth of Radial InGaAs Quantum Wells in GaAs Nanowires.
    Goktas NI; Dubrovskii VG; LaPierre RR
    J Phys Chem Lett; 2021 Feb; 12(4):1275-1283. PubMed ID: 33497239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a GaAsP shell on the optical properties of self-catalyzed GaAs nanowires grown on silicon.
    Couto OD; Sercombe D; Puebla J; Otubo L; Luxmoore IJ; Sich M; Elliott TJ; Chekhovich EA; Wilson LR; Skolnick MS; Liu HY; Tartakovskii AI
    Nano Lett; 2012 Oct; 12(10):5269-74. PubMed ID: 22989367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes.
    Rieger T; Luysberg M; Schäpers T; Grützmacher D; Lepsa MI
    Nano Lett; 2012 Nov; 12(11):5559-64. PubMed ID: 23030380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the morphology and wavelength of self-assembled coaxial GaAs/Ga(As)Sb/GaAs single quantum-well nanowires.
    Kang Y; Lin F; Tang J; Dai Q; Hou X; Meng B; Wang D; Wang L; Wei Z
    Phys Chem Chem Phys; 2023 Jan; 25(2):1248-1256. PubMed ID: 36530045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferred growth direction of III-V nanowires on differently oriented Si substrates.
    Zeng H; Yu X; Fonseka HA; Boras G; Jurczak P; Wang T; Sanchez AM; Liu H
    Nanotechnology; 2020 Nov; 31(47):475708. PubMed ID: 32885789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain accommodation in Ga-assisted GaAs nanowires grown on silicon (111).
    Biermanns A; Breuer S; Trampert A; Davydok A; Geelhaar L; Pietsch U
    Nanotechnology; 2012 Aug; 23(30):305703. PubMed ID: 22751267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and optical properties of self-catalytic GaAs:Mn nanowires grown by molecular beam epitaxy on silicon substrates.
    Gas K; Sadowski J; Kasama T; Siusys A; Zaleszczyk W; Wojciechowski T; Morhange JF; Altintaş A; Xu HQ; Szuszkiewicz W
    Nanoscale; 2013 Aug; 5(16):7410-8. PubMed ID: 23832244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.