These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 23899287)
1. X-ray crystal structure of phosphodiesterase 2 in complex with a highly selective, nanomolar inhibitor reveals a binding-induced pocket important for selectivity. Zhu J; Yang Q; Dai D; Huang Q J Am Chem Soc; 2013 Aug; 135(32):11708-11. PubMed ID: 23899287 [TBL] [Abstract][Full Text] [Related]
2. Identification of lead BAY60-7550 analogues as potential inhibitors that utilize the hydrophobic groove in PDE2A: a molecular dynamics simulation study. Kumar J; Umar T; Kausar T; Mobashir M; Nayeem SM; Hoda N J Mol Model; 2017 Jan; 23(1):7. PubMed ID: 27966018 [TBL] [Abstract][Full Text] [Related]
3. Discovery of potent, selective, bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model, part I: transformation of selective pyrazolodiazepinone phosphodiesterase 4 (PDE4) inhibitors into selective PDE2 inhibitors. Plummer MS; Cornicelli J; Roark H; Skalitzky DJ; Stankovic CJ; Bove S; Pandit J; Goodman A; Hicks J; Shahripour A; Beidler D; Lu XK; Sanchez B; Whitehead C; Sarver R; Braden T; Gowan R; Shen XQ; Welch K; Ogden A; Sadagopan N; Baum H; Miller H; Banotai C; Spessard C; Lightle S Bioorg Med Chem Lett; 2013 Jun; 23(11):3438-42. PubMed ID: 23582272 [TBL] [Abstract][Full Text] [Related]
4. Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system. Iffland A; Kohls D; Low S; Luan J; Zhang Y; Kothe M; Cao Q; Kamath AV; Ding YH; Ellenberger T Biochemistry; 2005 Jun; 44(23):8312-25. PubMed ID: 15938621 [TBL] [Abstract][Full Text] [Related]
5. Determination of the structure of human phosphodiesterase-2 in a bound state and its binding with inhibitors by molecular modeling, docking, and dynamics simulation. Hamza A; Zhan CG J Phys Chem B; 2009 Mar; 113(9):2896-908. PubMed ID: 19708117 [TBL] [Abstract][Full Text] [Related]
6. Discovery of potent selective bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model. Part II: optimization studies and demonstration of in vivo efficacy. Plummer MS; Cornicelli J; Roark H; Skalitzky DJ; Stankovic CJ; Bove S; Pandit J; Goodman A; Hicks J; Shahripour A; Beidler D; Lu XK; Sanchez B; Whitehead C; Sarver R; Braden T; Gowan R; Shen XQ; Welch K; Ogden A; Sadagopan N; Baum H; Miller H; Banotai C; Spessard C; Lightle S Bioorg Med Chem Lett; 2013 Jun; 23(11):3443-7. PubMed ID: 23597790 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for the activity of drugs that inhibit phosphodiesterases. Card GL; England BP; Suzuki Y; Fong D; Powell B; Lee B; Luu C; Tabrizizad M; Gillette S; Ibrahim PN; Artis DR; Bollag G; Milburn MV; Kim SH; Schlessinger J; Zhang KY Structure; 2004 Dec; 12(12):2233-47. PubMed ID: 15576036 [TBL] [Abstract][Full Text] [Related]
8. Novel triazines as potent and selective phosphodiesterase 10A inhibitors. Malamas MS; Stange H; Schindler R; Lankau HJ; Grunwald C; Langen B; Egerland U; Hage T; Ni Y; Erdei J; Fan KY; Parris K; Marquis KL; Grauer S; Brennan J; Navarra R; Graf R; Harrison BL; Robichaud A; Kronbach T; Pangalos MN; Brandon NJ; Hoefgen N Bioorg Med Chem Lett; 2012 Sep; 22(18):5876-84. PubMed ID: 22902656 [TBL] [Abstract][Full Text] [Related]
9. Discovery of novel N-1 substituted pyrazolopyrimidinones as potent, selective PDE2 inhibitors. Morriello GJ; Dwyer MP; Chen Y; Ginetti AT; Xu S; Lu J; Abeywickrema P; Wang D; Crespo A; Cabalu TD; Wilson JE; Stachel SJ; Paone DV; Sinz C Bioorg Med Chem Lett; 2021 Jul; 44():128082. PubMed ID: 33991626 [TBL] [Abstract][Full Text] [Related]
10. Predicting Binding Free Energies of PDE2 Inhibitors. The Difficulties of Protein Conformation. Pérez-Benito L; Keränen H; van Vlijmen H; Tresadern G Sci Rep; 2018 Mar; 8(1):4883. PubMed ID: 29559702 [TBL] [Abstract][Full Text] [Related]
11. A substrate selectivity and inhibitor design lesson from the PDE10-cAMP crystal structure: a computational study. Lau JK; Li XB; Cheng YK J Phys Chem B; 2010 Apr; 114(15):5154-60. PubMed ID: 20349929 [TBL] [Abstract][Full Text] [Related]
12. Homology modeling, docking studies and molecular dynamic simulations using graphical processing unit architecture to probe the type-11 phosphodiesterase catalytic site: a computational approach for the rational design of selective inhibitors. Cichero E; D'Ursi P; Moscatelli M; Bruno O; Orro A; Rotolo C; Milanesi L; Fossa P Chem Biol Drug Des; 2013 Dec; 82(6):718-31. PubMed ID: 23865680 [TBL] [Abstract][Full Text] [Related]
13. The identification of a novel lead class for phosphodiesterase 2 inhibition by fragment-based drug design. Forster AB; Abeywickrema P; Bunda J; Cox CD; Cabalu TD; Egbertson M; Fay J; Getty K; Hall D; Kornienko M; Lu J; Parthasarathy G; Reid J; Sharma S; Shipe WD; Smith SM; Soisson S; Stachel SJ; Su HP; Wang D; Berger R Bioorg Med Chem Lett; 2017 Dec; 27(23):5167-5171. PubMed ID: 29113762 [TBL] [Abstract][Full Text] [Related]
14. Critical amino acids in phosphodiesterase-5 catalytic site that provide for high-affinity interaction with cyclic guanosine monophosphate and inhibitors. Zoraghi R; Francis SH; Corbin JD Biochemistry; 2007 Nov; 46(47):13554-63. PubMed ID: 17979301 [TBL] [Abstract][Full Text] [Related]
15. A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization. Blount MA; Zoraghi R; Ke H; Bessay EP; Corbin JD; Francis SH Mol Pharmacol; 2006 Nov; 70(5):1822-31. PubMed ID: 16926278 [TBL] [Abstract][Full Text] [Related]
16. Indole acids as a novel PDE2 inhibitor chemotype that demonstrate pro-cognitive activity in multiple species. Stachel SJ; Egbertson MS; Wai J; Machacek M; Toolan DM; Swestock J; Eddins DM; Puri V; McGaughey G; Su HP; Perlow D; Wang D; Ma L; Parthasarathy G; Reid JC; Abeywickrema PD; Smith SM; Uslaner JM Bioorg Med Chem Lett; 2018 Apr; 28(6):1122-1126. PubMed ID: 29534798 [TBL] [Abstract][Full Text] [Related]
17. Application of Structure-Based Design and Parallel Chemistry to Identify a Potent, Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor. Helal CJ; Arnold EP; Boyden TL; Chang C; Chappie TA; Fennell KF; Forman MD; Hajos M; Harms JF; Hoffman WE; Humphrey JM; Kang Z; Kleiman RJ; Kormos BL; Lee CW; Lu J; Maklad N; McDowell L; Mente S; O'Connor RE; Pandit J; Piotrowski M; Schmidt AW; Schmidt CJ; Ueno H; Verhoest PR; Yang EX J Med Chem; 2017 Jul; 60(13):5673-5698. PubMed ID: 28574706 [TBL] [Abstract][Full Text] [Related]
18. Discovery of a new series of [1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors. Andrés JI; Buijnsters P; De Angelis M; Langlois X; Rombouts F; Trabanco AA; Vanhoof G Bioorg Med Chem Lett; 2013 Feb; 23(3):785-90. PubMed ID: 23260348 [TBL] [Abstract][Full Text] [Related]
19. PDE2 inhibition: potential for the treatment of cognitive disorders. Gomez L; Breitenbucher JG Bioorg Med Chem Lett; 2013 Dec; 23(24):6522-7. PubMed ID: 24189054 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of phosphodiesterase 2 reverses gp91phox oxidase-mediated depression- and anxiety-like behavior. Huang X; Xiaokaiti Y; Yang J; Pan J; Li Z; Luria V; Li Y; Song G; Zhu X; Zhang HT; O'Donnell JM; Xu Y Neuropharmacology; 2018 Dec; 143():176-185. PubMed ID: 30268520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]