BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1112 related articles for article (PubMed ID: 23899502)

  • 1. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.
    Head BP; Patel HH; Insel PA
    Biochim Biophys Acta; 2014 Feb; 1838(2):532-45. PubMed ID: 23899502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.
    Head BP; Patel HH; Roth DM; Murray F; Swaney JS; Niesman IR; Farquhar MG; Insel PA
    J Biol Chem; 2006 Sep; 281(36):26391-9. PubMed ID: 16818493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes.
    Ostrom RS; Bundey RA; Insel PA
    J Biol Chem; 2004 May; 279(19):19846-53. PubMed ID: 15007069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.
    Cerecedo D; Martínez-Vieyra I; Maldonado-García D; Hernández-González E; Winder SJ
    J Cell Biochem; 2015 Nov; 116(11):2528-40. PubMed ID: 26085308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes.
    Müller G; Jung C; Wied S; Welte S; Jordan H; Frick W
    Mol Cell Biol; 2001 Jul; 21(14):4553-67. PubMed ID: 11416134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid rafts and caveolae and their role in compartmentation of redox signaling.
    Patel HH; Insel PA
    Antioxid Redox Signal; 2009 Jun; 11(6):1357-72. PubMed ID: 19061440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caveolae facilitate but are not essential for platelet-activating factor-mediated calcium mobilization and extracellular signal-regulated kinase activation.
    Poisson C; Rollin S; Véronneau S; Bousquet SM; Larrivée JF; Le Gouill C; Boulay G; Stankova J; Rola-Pleszczynski M
    J Immunol; 2009 Aug; 183(4):2747-57. PubMed ID: 19620302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.
    Joseph N; Reicher B; Barda-Saad M
    Biochim Biophys Acta; 2014 Feb; 1838(2):557-68. PubMed ID: 23860253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons.
    Brusés JL; Chauvet N; Rutishauser U
    J Neurosci; 2001 Jan; 21(2):504-12. PubMed ID: 11160430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid rafts/caveolae as microdomains of calcium signaling.
    Pani B; Singh BB
    Cell Calcium; 2009 Jun; 45(6):625-33. PubMed ID: 19324409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclase signaling.
    Allen JA; Yu JZ; Dave RH; Bhatnagar A; Roth BL; Rasenick MM
    Mol Pharmacol; 2009 Nov; 76(5):1082-93. PubMed ID: 19696145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default.
    Oh P; Schnitzer JE
    Mol Biol Cell; 2001 Mar; 12(3):685-98. PubMed ID: 11251080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-calcium exchanger and lipid rafts in pig coronary artery smooth muscle.
    Kuszczak I; Samson SE; Pande J; Shen DQ; Grover AK
    Biochim Biophys Acta; 2011 Mar; 1808(3):589-96. PubMed ID: 21130729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoskeletal and scaffolding proteins as structural and functional determinants of TRP channels.
    Smani T; Dionisio N; López JJ; Berna-Erro A; Rosado JA
    Biochim Biophys Acta; 2014 Feb; 1838(2):658-64. PubMed ID: 23333715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains.
    Patel HH; Murray F; Insel PA
    Handb Exp Pharmacol; 2008; (186):167-84. PubMed ID: 18491052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood cells and endothelial barrier function.
    Rodrigues SF; Granger DN
    Tissue Barriers; 2015; 3(1-2):e978720. PubMed ID: 25838983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane/cytoskeleton communication.
    Meiri KF
    Subcell Biochem; 2004; 37():247-82. PubMed ID: 15376624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae.
    Insel PA; Head BP; Patel HH; Roth DM; Bundey RA; Swaney JS
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1131-4. PubMed ID: 16246064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation.
    Delaguillaumie A; Harriague J; Kohanna S; Bismuth G; Rubinstein E; Seigneuret M; Conjeaud H
    J Cell Sci; 2004 Oct; 117(Pt 22):5269-82. PubMed ID: 15454569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization.
    Cartaud A; Stetzkowski-Marden F; Maoui A; Cartaud J
    Biol Cell; 2011 Jun; 103(6):287-301. PubMed ID: 21524273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.