These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1140 related articles for article (PubMed ID: 23899502)

  • 1. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.
    Head BP; Patel HH; Insel PA
    Biochim Biophys Acta; 2014 Feb; 1838(2):532-45. PubMed ID: 23899502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.
    Head BP; Patel HH; Roth DM; Murray F; Swaney JS; Niesman IR; Farquhar MG; Insel PA
    J Biol Chem; 2006 Sep; 281(36):26391-9. PubMed ID: 16818493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes.
    Ostrom RS; Bundey RA; Insel PA
    J Biol Chem; 2004 May; 279(19):19846-53. PubMed ID: 15007069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.
    Cerecedo D; Martínez-Vieyra I; Maldonado-García D; Hernández-González E; Winder SJ
    J Cell Biochem; 2015 Nov; 116(11):2528-40. PubMed ID: 26085308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes.
    Müller G; Jung C; Wied S; Welte S; Jordan H; Frick W
    Mol Cell Biol; 2001 Jul; 21(14):4553-67. PubMed ID: 11416134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid rafts and caveolae and their role in compartmentation of redox signaling.
    Patel HH; Insel PA
    Antioxid Redox Signal; 2009 Jun; 11(6):1357-72. PubMed ID: 19061440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caveolae facilitate but are not essential for platelet-activating factor-mediated calcium mobilization and extracellular signal-regulated kinase activation.
    Poisson C; Rollin S; Véronneau S; Bousquet SM; Larrivée JF; Le Gouill C; Boulay G; Stankova J; Rola-Pleszczynski M
    J Immunol; 2009 Aug; 183(4):2747-57. PubMed ID: 19620302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.
    Joseph N; Reicher B; Barda-Saad M
    Biochim Biophys Acta; 2014 Feb; 1838(2):557-68. PubMed ID: 23860253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons.
    Brusés JL; Chauvet N; Rutishauser U
    J Neurosci; 2001 Jan; 21(2):504-12. PubMed ID: 11160430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid rafts/caveolae as microdomains of calcium signaling.
    Pani B; Singh BB
    Cell Calcium; 2009 Jun; 45(6):625-33. PubMed ID: 19324409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclase signaling.
    Allen JA; Yu JZ; Dave RH; Bhatnagar A; Roth BL; Rasenick MM
    Mol Pharmacol; 2009 Nov; 76(5):1082-93. PubMed ID: 19696145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default.
    Oh P; Schnitzer JE
    Mol Biol Cell; 2001 Mar; 12(3):685-98. PubMed ID: 11251080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-calcium exchanger and lipid rafts in pig coronary artery smooth muscle.
    Kuszczak I; Samson SE; Pande J; Shen DQ; Grover AK
    Biochim Biophys Acta; 2011 Mar; 1808(3):589-96. PubMed ID: 21130729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoskeletal and scaffolding proteins as structural and functional determinants of TRP channels.
    Smani T; Dionisio N; López JJ; Berna-Erro A; Rosado JA
    Biochim Biophys Acta; 2014 Feb; 1838(2):658-64. PubMed ID: 23333715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains.
    Patel HH; Murray F; Insel PA
    Handb Exp Pharmacol; 2008; (186):167-84. PubMed ID: 18491052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood cells and endothelial barrier function.
    Rodrigues SF; Granger DN
    Tissue Barriers; 2015; 3(1-2):e978720. PubMed ID: 25838983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane/cytoskeleton communication.
    Meiri KF
    Subcell Biochem; 2004; 37():247-82. PubMed ID: 15376624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae.
    Insel PA; Head BP; Patel HH; Roth DM; Bundey RA; Swaney JS
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1131-4. PubMed ID: 16246064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation.
    Delaguillaumie A; Harriague J; Kohanna S; Bismuth G; Rubinstein E; Seigneuret M; Conjeaud H
    J Cell Sci; 2004 Oct; 117(Pt 22):5269-82. PubMed ID: 15454569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization.
    Cartaud A; Stetzkowski-Marden F; Maoui A; Cartaud J
    Biol Cell; 2011 Jun; 103(6):287-301. PubMed ID: 21524273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.