These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 23899576)

  • 1. Bioaugmentation for treating transient 4-fluorocinnamic acid shock loads in a rotating biological contactor.
    Amorim CL; Duque AF; Afonso CM; Castro PM
    Bioresour Technol; 2013 Sep; 144():554-62. PubMed ID: 23899576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaugmentation of a rotating biological contactor for degradation of 2-fluorophenol.
    Duque AF; Bessa VS; Carvalho MF; Castro PM
    Bioresour Technol; 2011 Oct; 102(19):9300-3. PubMed ID: 21803579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain.
    Amorim CL; Ferreira AC; Carvalho MF; Afonso CM; Castro PM
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1893-905. PubMed ID: 23949994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial community dynamics in a rotating biological contactor treating 2-fluorophenol-containing wastewater.
    Duque AF; Bessa VS; Castro PM
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):97-104. PubMed ID: 24276477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaugmentation for treating transient or continuous p-nitrophenol shock loads in an aerobic sequencing batch reactor.
    Martín-Hernández M; Suárez-Ojeda ME; Carrera J
    Bioresour Technol; 2012 Nov; 123():150-6. PubMed ID: 22940312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation kinetics of 4-fluorocinnamic acid by a consortium of Arthrobacter and Ralstonia strains.
    Hasan SA; Wietzes P; Janssen DB
    Biodegradation; 2012 Feb; 23(1):117-25. PubMed ID: 21728015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of biofilm of a rotating biological contactor treating synthetic wastewater.
    Singh V; Mittal AK
    Water Sci Technol; 2012; 66(2):429-37. PubMed ID: 22699350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified rotating biological contactor for removal of dichloromethane vapours.
    Ravi R; Philip L; Swaminathan T
    Environ Technol; 2015; 36(5-8):566-72. PubMed ID: 25185452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotating biological contactor reactor with biofilm promoting mats for treatment of benzene and xylene containing wastewater.
    Sarayu K; Sandhya S
    Appl Biochem Biotechnol; 2012 Dec; 168(7):1928-37. PubMed ID: 23076564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological waste gas treatment with a modified rotating biological contactor. II. Effect of operating parameters on process performance and mathematical modeling.
    Vinage I; von Rohr PR
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):75-82. PubMed ID: 14505166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological waste gas treatment with a modified rotating biological contactor. Iota. Control of biofilm growth and long-term performance.
    Vinage I; von Rohr PR
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):69-74. PubMed ID: 14564499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities.
    Yu FB; Ali SW; Guan LB; Li SP; Zhou S
    J Hazard Mater; 2010 Apr; 176(1-3):20-6. PubMed ID: 19576690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ciliate communities of rotating biological contactor biofilms: a multivariate approach.
    Martín-Cereceda M; Zamora J; Pérez-Uz B; Guinea A
    Syst Appl Microbiol; 2002 Aug; 25(2):301-13. PubMed ID: 12353887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor.
    Kim YJ; Kim JN; Wee YJ; Park DH; Ryu HW
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):529-37. PubMed ID: 18478414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of organic shock loads on a two-stage activated sludge-biofilm reactor.
    Seetha N; Bhargava R; Kumar P
    Bioresour Technol; 2010 May; 101(9):3060-6. PubMed ID: 20074942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaugmentation of strain Methylobacterium sp. C1 towards p-nitrophenol removal with broad spectrum coaggregating bacteria in sequencing batch biofilm reactors.
    Yue W; Chen M; Cheng Z; Xie L; Li M
    J Hazard Mater; 2018 Feb; 344():431-440. PubMed ID: 29096256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic biotransformation of 4-fluorocinnamic acid to 4-fluorobenzoic acid.
    dos Santos LM; Spicq A; New AP; Lo Biundo G; Wolff JC; Edwards A
    Biodegradation; 2001; 12(1):23-9. PubMed ID: 11693292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial structure and community of RBC biofilm removing nitrate and phosphorus from domestic wastewater.
    Lee H; Choi E; Yun Z; Park YK
    J Microbiol Biotechnol; 2008 Aug; 18(8):1459-69. PubMed ID: 18756109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Denitrification of a landfill leachate with high nitrate concentration in an anoxic rotating biological contactor.
    Cortez S; Teixeira P; Oliveira R; Mota M
    Biodegradation; 2011 Jun; 22(3):661-71. PubMed ID: 21153683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor.
    Sandoval-Carrasco CA; Ahuatzi-Chacón D; Galíndez-Mayer J; Ruiz-Ordaz N; Juárez-Ramírez C; Martínez-Jerónimo F
    Bioresour Technol; 2013 Oct; 145():33-6. PubMed ID: 23566464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.