BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23899673)

  • 1. CaCO3 biomineralization on cyanobacterial surfaces: insights from experiments with three Synechococcus strains.
    Liang A; Paulo C; Zhu Y; Dittrich M
    Colloids Surf B Biointerfaces; 2013 Nov; 111():600-8. PubMed ID: 23899673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807.
    Lee BD; Apel WA; Walton MR
    Bioresour Technol; 2006 Dec; 97(18):2427-34. PubMed ID: 16289626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of cyanobacterial species for calcification.
    Lee BD; Apel WA; Walton MR
    Biotechnol Prog; 2004; 20(5):1345-51. PubMed ID: 15458316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy.
    Dittrich M; Sibler S
    J Colloid Interface Sci; 2005 Jun; 286(2):487-95. PubMed ID: 15897062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/75042.
    Acharya C; Joseph D; Apte SK
    Bioresour Technol; 2009 Apr; 100(7):2176-81. PubMed ID: 19070485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.
    Xiao J; Wang Z; Tang Y; Yang S
    Langmuir; 2010 Apr; 26(7):4977-83. PubMed ID: 19911801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism.
    Obst M; Wehrli B; Dittrich M
    Geobiology; 2009 Jun; 7(3):324-47. PubMed ID: 19476505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO
    Seifan M; Samani AK; Berenjian A
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3131-3142. PubMed ID: 28091788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and biochemical characterization of extracellular polymeric secretions (EPS) from modern soft marine stromatolites (Bahamas) and its inhibitory effect on CaCO3 precipitation.
    Kawaguchi T; Decho AW
    Prep Biochem Biotechnol; 2002 Feb; 32(1):51-63. PubMed ID: 11934077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.
    Ries JB; Anderson MA; Hill RT
    Geobiology; 2008 Mar; 6(2):106-19. PubMed ID: 18380873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and characterization of CaCO
    Liu G; Guo W; Yuan S; Zhu H; Yang T; Zhou Y; Zhu D
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):23308-23315. PubMed ID: 27734314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of softening precipitate composition and surface characteristics on natural organic matter adsorption.
    Russell CG; Lawler DF; Speitel GE; Katz LE
    Environ Sci Technol; 2009 Oct; 43(20):7837-42. PubMed ID: 19921902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft X-ray spectro-tomography study of cyanobacterial biomineral nucleation.
    Obst M; Wang J; Hitchcock AP
    Geobiology; 2009 Dec; 7(5):577-91. PubMed ID: 19863594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio and metadynamics studies on the role of essential functional groups in biomineralization of calcium carbonate and environmental situations.
    Saharay M; Kirkpatrick RJ
    Phys Chem Chem Phys; 2014 Dec; 16(48):26843-54. PubMed ID: 25375213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH control in biological systems using calcium carbonate.
    Salek SS; van Turnhout AG; Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2015 May; 112(5):905-13. PubMed ID: 25425281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism-Induced CaCO3 Biomineralization During Reactive Transport in a Micromodel: Implications for Porosity Alteration.
    Singh R; Yoon H; Sanford RA; Katz L; Fouke BW; Werth CJ
    Environ Sci Technol; 2015 Oct; 49(20):12094-104. PubMed ID: 26348257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of nanostructured calcium carbonate for efficient gene delivery.
    Zhao D; Wang CQ; Zhuo RX; Cheng SX
    Colloids Surf B Biointerfaces; 2014 Jun; 118():111-6. PubMed ID: 24732398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy and X-ray photoelectron spectroscopy study of NO2 reactions on CaCO3 (1014) surfaces in humid environments.
    Baltrusaitis J; Grassian VH
    J Phys Chem A; 2012 Sep; 116(36):9001-9. PubMed ID: 22845863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization.
    Neira-Carrillo A; Acevedo DF; Miras MC; Barbero CA; Gebauer D; Cölfen H; Arias JL
    Langmuir; 2008 Nov; 24(21):12496-507. PubMed ID: 18839967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface charge and zeta-potential of metabolically active and dead cyanobacteria.
    Martinez RE; Pokrovsky OS; Schott J; Oelkers EH
    J Colloid Interface Sci; 2008 Jul; 323(2):317-25. PubMed ID: 18471824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.