These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 23899751)

  • 1. Carnitine and fat oxidation.
    Stephens FB; Galloway SD
    Nestle Nutr Inst Workshop Ser; 2013; 76():13-23. PubMed ID: 23899751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does skeletal muscle carnitine availability influence fuel selection during exercise?
    Stephens FB
    Proc Nutr Soc; 2018 Feb; 77(1):11-19. PubMed ID: 29037265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies to enhance fat utilisation during exercise.
    Hawley JA; Brouns F; Jeukendrup A
    Sports Med; 1998 Apr; 25(4):241-57. PubMed ID: 9587182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle.
    Stephens FB; Constantin-Teodosiu D; Greenhaff PL
    J Physiol; 2007 Jun; 581(Pt 2):431-44. PubMed ID: 17331998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise.
    Roepstorff C; Halberg N; Hillig T; Saha AK; Ruderman NB; Wojtaszewski JF; Richter EA; Kiens B
    Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E133-42. PubMed ID: 15383373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing fat oxidation through exercise and diet.
    Achten J; Jeukendrup AE
    Nutrition; 2004; 20(7-8):716-27. PubMed ID: 15212756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-Carnitine enhances exercise endurance capacity by promoting muscle oxidative metabolism in mice.
    Kim JH; Pan JH; Lee ES; Kim YJ
    Biochem Biophys Res Commun; 2015 Aug; 464(2):568-73. PubMed ID: 26164228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brief intense exercise followed by passive recovery modifies the pattern of fuel use in humans during subsequent sustained intermittent exercise.
    Christmass MA; Dawson B; Goodman C; Arthur PG
    Acta Physiol Scand; 2001 May; 172(1):39-52. PubMed ID: 11437738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans.
    Kimber NE; Heigenhauser GJ; Spriet LL; Dyck DJ
    J Physiol; 2003 May; 548(Pt 3):919-27. PubMed ID: 12651914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutritional strategies for promoting fat utilization and delaying the onset of fatigue during prolonged exercise.
    Lambert EV; Hawley JA; Goedecke J; Noakes TD; Dennis SC
    J Sports Sci; 1997 Jun; 15(3):315-24. PubMed ID: 9232557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fat adaptation science: low-carbohydrate, high- fat diets to alter fuel utilization and promote training adaptation.
    Hawley JA
    Nestle Nutr Inst Workshop Ser; 2011; 69():59-71; discussion 71-7. PubMed ID: 22301836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by beta-adrenergic blockade.
    Zderic TW; Schenk S; Davidson CJ; Byerley LO; Coyle EF
    Am J Physiol Endocrinol Metab; 2004 Dec; 287(6):E1195-201. PubMed ID: 15315908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue.
    Larsen S; Danielsen JH; Søndergård SD; Søgaard D; Vigelsoe A; Dybboe R; Skaaby S; Dela F; Helge JW
    Scand J Med Sci Sports; 2015 Feb; 25(1):e59-69. PubMed ID: 24845952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carnitine supplementation: effect on muscle carnitine and glycogen content during exercise.
    Vukovich MD; Costill DL; Fink WJ
    Med Sci Sports Exerc; 1994 Sep; 26(9):1122-9. PubMed ID: 7808246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated Prolonged Exercise Decreases Maximal Fat Oxidation in Older Men.
    Morville T; Rosenkilde M; Munch-Andersen T; Andersen PR; Kjær Groenbæk K; Helbo S; Kristensen M; Vigelsø Hansen A; Mattsson N; Rasmusen HK; Guadalupe-Grau A; Fago A; Neigaard Hansen C; Twelkmeyer B; Løvind Andersen J; Dela F; Wulff Helge J
    Med Sci Sports Exerc; 2017 Feb; 49(2):308-316. PubMed ID: 27685008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of aging on glucose and lipid metabolism during endurance exercise.
    Mittendorfer B; Klein S
    Int J Sport Nutr Exerc Metab; 2001 Dec; 11 Suppl():S86-91. PubMed ID: 11915933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering endogenous carbohydrate availability to support training adaptations.
    Philp A; Burke LM; Baar K
    Nestle Nutr Inst Workshop Ser; 2011; 69():19-31; discussion 31-7. PubMed ID: 22301834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans.
    Stephens FB; Wall BT; Marimuthu K; Shannon CE; Constantin-Teodosiu D; Macdonald IA; Greenhaff PL
    J Physiol; 2013 Sep; 591(18):4655-66. PubMed ID: 23818692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of lipids during exercise in human subjects: metabolic and dietary constraints.
    Brouns F; van der Vusse GJ
    Br J Nutr; 1998 Feb; 79(2):117-28. PubMed ID: 9536855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fat adaptation in well-trained athletes: effects on cell metabolism.
    Yeo WK; Carey AL; Burke L; Spriet LL; Hawley JA
    Appl Physiol Nutr Metab; 2011 Feb; 36(1):12-22. PubMed ID: 21326374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.