These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 23899925)
1. Haneş and Valea Vinului (Romania) closed mines Acid Mine Drainages (AMDs)--actual condition and passive treatment remediation proposal. Măicăneanu A; Bedelean H; Ardelean M; Burcă S; Stanca M Chemosphere; 2013 Oct; 93(7):1400-5. PubMed ID: 23899925 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico. Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977 [TBL] [Abstract][Full Text] [Related]
3. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. Ríos CA; Williams CD; Roberts CL J Hazard Mater; 2008 Aug; 156(1-3):23-35. PubMed ID: 18221835 [TBL] [Abstract][Full Text] [Related]
4. Use of coal mining waste for the removal of acidity and metal ions Al (III), Fe (III) and Mn (II) in acid mine drainage. Geremias R; Laus R; Macan JM; Pedrosa RC; Laranjeira MC; Silvano J; Fávere FV Environ Technol; 2008 Aug; 29(8):863-9. PubMed ID: 18724641 [TBL] [Abstract][Full Text] [Related]
5. Geochemical characterization of acid mine lakes in northwest Turkey and their effect on the environment. Yucel DS; Baba A Arch Environ Contam Toxicol; 2013 Apr; 64(3):357-76. PubMed ID: 23223936 [TBL] [Abstract][Full Text] [Related]
6. MiniSipper: a new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring. Chapin TP; Todd AS Sci Total Environ; 2012 Nov; 439():343-53. PubMed ID: 23103760 [TBL] [Abstract][Full Text] [Related]
7. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Hwang SK; Jho EH Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584 [TBL] [Abstract][Full Text] [Related]
8. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal. Song H; Yim GJ; Ji SW; Neculita CM; Hwang T J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144 [TBL] [Abstract][Full Text] [Related]
9. Fluidized bed ash and passive treatment reduce the adverse effects of acid mine drainage on aquatic organisms. Porter CM; Nairn RW Sci Total Environ; 2010 Oct; 408(22):5445-51. PubMed ID: 20810147 [TBL] [Abstract][Full Text] [Related]
10. Toxic mine drainage from Asia's biggest copper mine at Malanjkhand, India. Pandey PK; Sharma R; Roy M; Pandey M Environ Geochem Health; 2007 Jun; 29(3):237-48. PubMed ID: 17279451 [TBL] [Abstract][Full Text] [Related]
11. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Hallberg KB; Johnson DB Sci Total Environ; 2005 Feb; 338(1-2):115-24. PubMed ID: 15680632 [TBL] [Abstract][Full Text] [Related]
12. From highly polluted Zn-rich acid mine drainage to non-metallic waters: implementation of a multi-step alkaline passive treatment system to remediate metal pollution. Macías F; Caraballo MA; Rötting TS; Pérez-López R; Nieto JM; Ayora C Sci Total Environ; 2012 Sep; 433():323-30. PubMed ID: 22819882 [TBL] [Abstract][Full Text] [Related]
13. Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin. Caraballo MA; Macías F; Rötting TS; Nieto JM; Ayora C Environ Pollut; 2011 Dec; 159(12):3613-9. PubMed ID: 21862191 [TBL] [Abstract][Full Text] [Related]
14. Removal and recovery of metal ions from acid mine drainage using lignite--A low cost sorbent. Mohan D; Chander S J Hazard Mater; 2006 Oct; 137(3):1545-53. PubMed ID: 16784810 [TBL] [Abstract][Full Text] [Related]
15. In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas. Faria MS; Lopes RJ; Malcato J; Nogueira AJ; Soares AM Environ Pollut; 2008 Jan; 151(1):213-21. PubMed ID: 17482733 [TBL] [Abstract][Full Text] [Related]
16. Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event. Lin C; Wu Y; Lu W; Chen A; Liu Y J Hazard Mater; 2007 Apr; 142(1-2):199-207. PubMed ID: 16979817 [TBL] [Abstract][Full Text] [Related]
17. Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Luís AT; Teixeira P; Almeida SF; Matos JX; da Silva EF Sci Total Environ; 2011 Sep; 409(20):4312-25. PubMed ID: 21802708 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea: Acidianus manzaensis YN25. Li M; Huang Y; Yang Y; Wang H; Hu L; Zhong H; He Z Ecotoxicol Environ Saf; 2020 Mar; 190():110084. PubMed ID: 31869713 [TBL] [Abstract][Full Text] [Related]
19. Performance of a passive treatment system for net-acidic coal mine drainage over five years of operation. Matthies R; Aplin AC; Jarvis AP Sci Total Environ; 2010 Sep; 408(20):4877-85. PubMed ID: 20605568 [TBL] [Abstract][Full Text] [Related]
20. The chemistry and toxicity of discharge waters from copper mine tailing impoundment in the valley of the Apuseni Mountains in Romania. Rzymski P; Klimaszyk P; Marszelewski W; Borowiak D; Mleczek M; Nowiński K; Pius B; Niedzielski P; Poniedziałek B Environ Sci Pollut Res Int; 2017 Sep; 24(26):21445-21458. PubMed ID: 28744684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]