These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 23899935)
1. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality. Grenez F; Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A Sensors (Basel); 2013 Jul; 13(8):9679-703. PubMed ID: 23899935 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network. Qi Y; Soh CB; Gunawan E; Low KS; Thomas R IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165 [TBL] [Abstract][Full Text] [Related]
3. Shoe-integrated sensors in physical rehabilitation. Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065 [TBL] [Abstract][Full Text] [Related]
4. Development of an in-shoe pressure-sensitive device for gait analysis. De Rossi SM; Lenzi T; Vitiello N; Donati M; Persichetti A; Giovacchini F; Vecchi F; Carrozza MC Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5637-40. PubMed ID: 22255618 [TBL] [Abstract][Full Text] [Related]
5. Gait analysis using floor markers and inertial sensors. Do TN; Suh YS Sensors (Basel); 2012; 12(2):1594-611. PubMed ID: 22438727 [TBL] [Abstract][Full Text] [Related]
6. Design and development of a foot position tracking device. Park J; Cho J; Choi J Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4903-6. PubMed ID: 19163816 [TBL] [Abstract][Full Text] [Related]
7. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait. Kugler P; Schlarb H; Blinn J; Picard A; Eskofier B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4537-40. PubMed ID: 23366937 [TBL] [Abstract][Full Text] [Related]
8. Preliminary study on verifying the detection of gait intention based on knee joint anterior displacement of gait slopes. Yu C; Kang SR; Yang G; Hong CU; Lee HJ; Oh DY; Kwon TK Biomed Mater Eng; 2015; 26 Suppl 1():S583-92. PubMed ID: 26406052 [TBL] [Abstract][Full Text] [Related]
9. Technological solution for determining gait parameters using pressure sensors: a case study of multiple sclerosis patients. Viqueira Villarejo M; Maeso García J; García Zapirain B; Méndez Zorrilla A Biomed Mater Eng; 2014; 24(6):3511-22. PubMed ID: 25227064 [TBL] [Abstract][Full Text] [Related]
10. Development of gait segmentation methods for wearable foot pressure sensors. Crea S; De Rossi SM; Donati M; Reberšek P; Novak D; Vitiello N; Lenzi T; Podobnik J; Munih M; Carrozza MC Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5018-21. PubMed ID: 23367055 [TBL] [Abstract][Full Text] [Related]
11. Instrumented Shoes for Real-Time Activity Monitoring Applications. Moufawad El Achkar C; Lenoble-Hoskovec C; Major K; Paraschiv-Ionescu A; Büla C; Aminian K Stud Health Technol Inform; 2016; 225():663-7. PubMed ID: 27332298 [TBL] [Abstract][Full Text] [Related]
12. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. Mariani B; Rochat S; Büla CJ; Aminian K IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865 [TBL] [Abstract][Full Text] [Related]
13. Gait analysis using a shoe-integrated wireless sensor system. Bamberg SJ; Benbasat AY; Scarborough DM; Krebs DE; Paradiso JA IEEE Trans Inf Technol Biomed; 2008 Jul; 12(4):413-23. PubMed ID: 18632321 [TBL] [Abstract][Full Text] [Related]
14. Drift removal for improving the accuracy of gait parameters using wearable sensor systems. Takeda R; Lisco G; Fujisawa T; Gastaldi L; Tohyama H; Tadano S Sensors (Basel); 2014 Dec; 14(12):23230-47. PubMed ID: 25490587 [TBL] [Abstract][Full Text] [Related]
15. Characterizing walking activity in people with stroke. Fulk GD; Lopez-Meyer P; Sazonov ES Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5211-4. PubMed ID: 22255512 [TBL] [Abstract][Full Text] [Related]
16. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network. Qi Y; Soh CB; Gunawan E; Low KS IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996 [TBL] [Abstract][Full Text] [Related]
17. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525 [TBL] [Abstract][Full Text] [Related]
18. John Rogers and the Ultrathin Limits of Technology: His Flexible, Skin-Mounted Biostamp is Changing the Game for Wearable Diagnostic Devices. Chandler DL IEEE Pulse; 2016; 7(1):9-12. PubMed ID: 26799720 [TBL] [Abstract][Full Text] [Related]
19. Dynamic stability margin using a marker based system and Tekscan: a comparison of four gait conditions. Lugade V; Kaufman K Gait Posture; 2014; 40(1):252-4. PubMed ID: 24447906 [TBL] [Abstract][Full Text] [Related]
20. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis. Alonge F; Cucco E; D'Ippolito F; Pulizzotto A Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]