These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23899953)

  • 1. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.
    Ouyang W; Wang W; Zhang H; Wu W; Li Z
    Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting.
    Tong X; Liu S; Crittenden J; Chen Y
    ACS Nano; 2021 Apr; 15(4):5838-5860. PubMed ID: 33844502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network.
    Choi E; Kwon K; Kim D; Park J
    Lab Chip; 2015 Jan; 15(1):168-78. PubMed ID: 25328008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salinity gradient power: influences of temperature and nanopore size.
    Tseng S; Li YM; Lin CY; Hsu JP
    Nanoscale; 2016 Jan; 8(4):2350-7. PubMed ID: 26752789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion.
    Khatibi M; Dartoomi H; Ashrafizadeh SN
    Langmuir; 2023 Sep; 39(38):13717-13734. PubMed ID: 37702658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oppositely Charged Ti
    Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membranes for Osmotic Power Generation by Reverse Electrodialysis.
    Rahman MM
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the efficiency of energy harvesting from salt gradient with ion-selective nanochannel.
    Zhang Y; Huang Z; He Y; Miao X
    Nanotechnology; 2019 Jul; 30(29):295402. PubMed ID: 30861495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse electrodialysis in bilayer nanochannels: salinity gradient-driven power generation.
    Long R; Kuang Z; Liu Z; Liu W
    Phys Chem Chem Phys; 2018 Mar; 20(10):7295-7302. PubMed ID: 29485149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Ti
    Hong S; Ming F; Shi Y; Li R; Kim IS; Tang CY; Alshareef HN; Wang P
    ACS Nano; 2019 Aug; 13(8):8917-8925. PubMed ID: 31305989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes.
    Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J
    J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein sensing by nanofluidic crystal and its signal enhancement.
    Sang J; Du H; Wang W; Chu M; Wang Y; Li H; Alice Zhang H; Wu W; Li Z
    Biomicrofluidics; 2013; 7(2):24112. PubMed ID: 24404017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting.
    Long R; Kuang Z; Liu Z; Liu W
    Natl Sci Rev; 2019 Nov; 6(6):1266-1273. PubMed ID: 34692004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges.
    Liu X; Li X; Chu X; Zhang B; Zhang J; Hambsch M; Mannsfeld SCB; Borrelli M; Löffler M; Pohl D; Liu Y; Zhang Z; Feng X
    Adv Mater; 2024 May; 36(18):e2310791. PubMed ID: 38299804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films.
    Hwang J; Kataoka S; Endo A; Daiguji H
    Lab Chip; 2016 Sep; 16(19):3824-3832. PubMed ID: 27714018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.