BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23900259)

  • 1. Reversible structural transformation of FeO(x) nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis.
    Fu Q; Yao Y; Guo X; Wei M; Ning Y; Liu H; Yang F; Liu Z; Bao X
    Phys Chem Chem Phys; 2013 Sep; 15(35):14708-14. PubMed ID: 23900259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the edge structures of platinum(111)-supported ultrathin FeO islands: the influence of oxidation state.
    Zeuthen H; Kudernatsch W; Merte LR; Ono LK; Lammich L; Besenbacher F; Wendt S
    ACS Nano; 2015 Jan; 9(1):573-83. PubMed ID: 25574971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles.
    An K; Alayoglu S; Musselwhite N; Plamthottam S; Melaet G; Lindeman AE; Somorjai GA
    J Am Chem Soc; 2013 Nov; 135(44):16689-96. PubMed ID: 24090187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation.
    Mu R; Fu Q; Xu H; Zhang H; Huang Y; Jiang Z; Zhang S; Tan D; Bao X
    J Am Chem Soc; 2011 Feb; 133(6):1978-86. PubMed ID: 21247156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface.
    Kudernatsch W; Peng G; Zeuthen H; Bai Y; Merte LR; Lammich L; Besenbacher F; Mavrikakis M; Wendt S
    ACS Nano; 2015 Aug; 9(8):7804-14. PubMed ID: 26027877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111): The Role of Edge Sites and Substrate Interactions.
    Fester J; Sun Z; Rodríguez-Fernández J; Walton A; Lauritsen JV
    J Phys Chem B; 2018 Jan; 122(2):561-571. PubMed ID: 28800235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions.
    Tao F; Grass ME; Zhang Y; Butcher DR; Aksoy F; Aloni S; Altoe V; Alayoglu S; Renzas JR; Tsung CK; Zhu Z; Liu Z; Salmeron M; Somorjai GA
    J Am Chem Soc; 2010 Jun; 132(25):8697-703. PubMed ID: 20521788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy.
    Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ
    Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible oxidation and reduction of gold-supported iron oxide islands at room temperature.
    Jiang Y; Zhu Y; Zhou D; Jiang Z; Si N; Stacchiola D; Niu T
    J Chem Phys; 2020 Feb; 152(7):074710. PubMed ID: 32087652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts.
    Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD
    Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method.
    An N; Yu Q; Liu G; Li S; Jia M; Zhang W
    J Hazard Mater; 2011 Feb; 186(2-3):1392-7. PubMed ID: 21211900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.
    Somorjai GA; Aliaga C
    Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts.
    Xu L; Ma Y; Zhang Y; Jiang Z; Huang W
    J Am Chem Soc; 2009 Nov; 131(45):16366-7. PubMed ID: 19860417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions.
    Takagi Y; Uruga T; Tada M; Iwasawa Y; Yokoyama T
    Acc Chem Res; 2018 Mar; 51(3):719-727. PubMed ID: 29509021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO-induced embedding of Pt adatoms in a partially reduced FeO(x) film on Pt(111).
    Merte LR; Knudsen J; Eichhorn FM; Porsgaard S; Zeuthen H; Grabow LC; Lægsgaard E; Bluhm H; Salmeron M; Mavrikakis M; Besenbacher F
    J Am Chem Soc; 2011 Jul; 133(28):10692-5. PubMed ID: 21707081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ oxidation study of Pt(110) and its interaction with CO.
    Butcher DR; Grass ME; Zeng Z; Aksoy F; Bluhm H; Li WX; Mun BS; Somorjai GA; Liu Z
    J Am Chem Soc; 2011 Dec; 133(50):20319-25. PubMed ID: 22070406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO oxidation on nanostructured SnO(x)/Pt(111) surfaces: unique properties of reduced SnO(x).
    Axnanda S; Zhou WP; White MG
    Phys Chem Chem Phys; 2012 Aug; 14(29):10207-14. PubMed ID: 22733161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal fabrication and catalytic properties of La(1-x)Sr(x)M(1-y)Fe(y)O(3) (M = Mn, Co) that are highly active for the removal of toluene.
    Deng J; Dai H; Jiang H; Zhang L; Wang G; He H; Au CT
    Environ Sci Technol; 2010 Apr; 44(7):2618-23. PubMed ID: 20192252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.