These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 23900277)
1. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Jackson JM; Witek MA; Hupert ML; Brady C; Pullagurla S; Kamande J; Aufforth RD; Tignanelli CJ; Torphy RJ; Yeh JJ; Soper SA Lab Chip; 2014 Jan; 14(1):106-17. PubMed ID: 23900277 [TBL] [Abstract][Full Text] [Related]
2. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. Adams AA; Okagbare PI; Feng J; Hupert ML; Patterson D; Göttert J; McCarley RL; Nikitopoulos D; Murphy MC; Soper SA J Am Chem Soc; 2008 Jul; 130(27):8633-41. PubMed ID: 18557614 [TBL] [Abstract][Full Text] [Related]
3. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Sheng W; Ogunwobi OO; Chen T; Zhang J; George TJ; Liu C; Fan ZH Lab Chip; 2014 Jan; 14(1):89-98. PubMed ID: 24220648 [TBL] [Abstract][Full Text] [Related]
4. Functional, UV-curable coating for the capture of circulating tumor cells. Song W; Li X; Zhao Y; Liu C; Xu J; Wang H; Zhang T Biomater Sci; 2019 May; 7(6):2383-2393. PubMed ID: 30916683 [TBL] [Abstract][Full Text] [Related]
5. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967 [TBL] [Abstract][Full Text] [Related]
6. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794 [TBL] [Abstract][Full Text] [Related]
7. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Galletti G; Sung MS; Vahdat LT; Shah MA; Santana SM; Altavilla G; Kirby BJ; Giannakakou P Lab Chip; 2014 Jan; 14(1):147-56. PubMed ID: 24202699 [TBL] [Abstract][Full Text] [Related]
8. Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs). Hupert ML; Jackson JM; Wang H; Witek MA; Kamande J; Milowsky MI; Whang YE; Soper SA Microsyst Technol; 2014 Oct; 20(10-11):1815-1825. PubMed ID: 25349469 [TBL] [Abstract][Full Text] [Related]
9. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249 [TBL] [Abstract][Full Text] [Related]
10. Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. Stachowiak TB; Mair DA; Holden TG; Lee LJ; Svec F; Fréchet JM J Sep Sci; 2007 May; 30(7):1088-93. PubMed ID: 17566345 [TBL] [Abstract][Full Text] [Related]
11. Immunofunctional photodegradable poly(ethylene glycol) hydrogel surfaces for the capture and release of rare cells. LeValley PJ; Tibbitt MW; Noren B; Kharkar P; Kloxin AM; Anseth KS; Toner M; Oakey J Colloids Surf B Biointerfaces; 2019 Feb; 174():483-492. PubMed ID: 30497010 [TBL] [Abstract][Full Text] [Related]
12. Size-selective collection of circulating tumor cells using Vortex technology. Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411 [TBL] [Abstract][Full Text] [Related]
13. Modular microsystem for the isolation, enumeration, and phenotyping of circulating tumor cells in patients with pancreatic cancer. Kamande JW; Hupert ML; Witek MA; Wang H; Torphy RJ; Dharmasiri U; Njoroge SK; Jackson JM; Aufforth RD; Snavely A; Yeh JJ; Soper SA Anal Chem; 2013 Oct; 85(19):9092-100. PubMed ID: 23947293 [TBL] [Abstract][Full Text] [Related]
14. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. van Midwoud PM; Janse A; Merema MT; Groothuis GM; Verpoorte E Anal Chem; 2012 May; 84(9):3938-44. PubMed ID: 22444457 [TBL] [Abstract][Full Text] [Related]
15. Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells. Ohnaga T; Shimada Y; Moriyama M; Kishi H; Obata T; Takata K; Okumura T; Nagata T; Muraguchi A; Tsukada K Biomed Microdevices; 2013 Aug; 15(4):611-616. PubMed ID: 23666489 [TBL] [Abstract][Full Text] [Related]
16. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture. Ates HC; Ozgur E; Kulah H Biointerphases; 2018 Mar; 13(2):021001. PubMed ID: 29571263 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Brown L; Koerner T; Horton JH; Oleschuk RD Lab Chip; 2006 Jan; 6(1):66-73. PubMed ID: 16372071 [TBL] [Abstract][Full Text] [Related]
18. Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. Wei S; Vaidya B; Patel AB; Soper SA; McCarley RL J Phys Chem B; 2005 Sep; 109(35):16988-96. PubMed ID: 16853163 [TBL] [Abstract][Full Text] [Related]
19. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Dharmasiri U; Balamurugan S; Adams AA; Okagbare PI; Obubuafo A; Soper SA Electrophoresis; 2009 Sep; 30(18):3289-300. PubMed ID: 19722212 [TBL] [Abstract][Full Text] [Related]
20. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices. Khnouf R; Karasneh D; Albiss BA Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]