BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23900343)

  • 21. Validated predictive QSAR modeling of N-aryl-oxazolidinone-5-carboxamides for anti-HIV protease activity.
    Halder AK; Jha T
    Bioorg Med Chem Lett; 2010 Oct; 20(20):6082-7. PubMed ID: 20832304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The efficacy of conceptual DFT descriptors and docking scores on the QSAR models of HIV protease inhibitors.
    Srivastava HK; Choudhury C; Sastry GN
    Med Chem; 2012 Sep; 8(5):811-25. PubMed ID: 22741804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1.
    Frecer V; Burello E; Miertus S
    Bioorg Med Chem; 2005 Sep; 13(18):5492-501. PubMed ID: 16054372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fullerene derivative as anti-HIV protease inhibitor: molecular modeling and QSAR approaches.
    Ibrahim M; Saleh NA; Elshemey WM; Elsayed AA
    Mini Rev Med Chem; 2012 Jun; 12(6):447-51. PubMed ID: 22587761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors.
    Fatemi MH; Heidari A; Gharaghani S
    J Theor Biol; 2015 Mar; 369():13-22. PubMed ID: 25600056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.
    Jenwitheesuk E; Samudrala R
    Antivir Ther; 2005; 10(1):157-66. PubMed ID: 15751773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors. II. Molecular graphics and modeling.
    Kiralj R; Ferreira MM
    J Mol Graph Model; 2003 Jun; 21(6):499-515. PubMed ID: 12676237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deformation density components analysis of fullerene-based anti-HIV drugs.
    Fakhraee S; Souri M
    J Mol Model; 2014 Nov; 20(11):2486. PubMed ID: 25388278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fullerene derivatives as dual inhibitors of HIV-1 reverse transcriptase and protease.
    Yasuno T; Ohe T; Kataoka H; Hashimoto K; Ishikawa Y; Furukawa K; Tateishi Y; Kobayashi T; Takahashi K; Nakamura S; Mashino T
    Bioorg Med Chem Lett; 2021 Jan; 31():127675. PubMed ID: 33161121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revealing interaction mode between HIV-1 protease and mannitol analog inhibitor.
    Yan GW; Chen Y; Li Y; Chen HF
    Chem Biol Drug Des; 2012 Jun; 79(6):916-25. PubMed ID: 22296911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease.
    Zhu Z; Schuster DI; Tuckerman ME
    Biochemistry; 2003 Feb; 42(5):1326-33. PubMed ID: 12564936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fullerene-based inhibitors of HIV-1 protease.
    Strom TA; Durdagi S; Ersoz SS; Salmas RE; Supuran CT; Barron AR
    J Pept Sci; 2015 Dec; 21(12):862-70. PubMed ID: 26767741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design.
    Perryman AL; Lin JH; Andrew McCammon J
    Chem Biol Drug Des; 2006 May; 67(5):336-45. PubMed ID: 16784458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation.
    Friedman SH; Ganapathi PS; Rubin Y; Kenyon GL
    J Med Chem; 1998 Jun; 41(13):2424-9. PubMed ID: 9632374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis, screening and computational investigation of pentacycloundecane-peptoids as potent CSA-HIV PR inhibitors.
    Makatini MM; Petzold K; Arvidsson PI; Honarparvar B; Govender T; Maguire GE; Parboosing R; Sayed Y; Soliman ME; Kruger HG
    Eur J Med Chem; 2012 Nov; 57():459-67. PubMed ID: 22867528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors: application of molecular field analysis.
    Nunthanavanit P; Anthony NG; Johnston BF; Mackay SP; Ungwitayatorn J
    Arch Pharm (Weinheim); 2008 Jun; 341(6):357-64. PubMed ID: 18442018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of peptidomimetic inhibitors of aspartic protease of HIV-1 containing -Phe Psi Pro- core and displaying favourable ADME-related properties.
    Frecer V; Berti F; Benedetti F; Miertus S
    J Mol Graph Model; 2008 Oct; 27(3):376-87. PubMed ID: 18678515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational studies of darunavir into HIV-1 protease and DMPC bilayer: necessary conditions for effective binding and the role of the flaps.
    Leonis G; Czyżnikowska Ż; Megariotis G; Reis H; Papadopoulos MG
    J Chem Inf Model; 2012 Jun; 52(6):1542-58. PubMed ID: 22587384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. QSAR studies on HIV-1 protease inhibitors using non-linearly transformed descriptors.
    Saranya N; Selvaraj S
    Curr Comput Aided Drug Des; 2012 Mar; 8(1):10-49. PubMed ID: 21999608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.