These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23900343)

  • 81. Structural analysis of an HIV-1 protease I47A mutant resistant to the protease inhibitor lopinavir.
    Kagan RM; Shenderovich MD; Heseltine PN; Ramnarayan K
    Protein Sci; 2005 Jul; 14(7):1870-8. PubMed ID: 15937277
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Small molecule regulation of protein conformation by binding in the Flap of HIV protease.
    Tiefenbrunn T; Forli S; Baksh MM; Chang MW; Happer M; Lin YC; Perryman AL; Rhee JK; Torbett BE; Olson AJ; Elder JH; Finn MG; Stout CD
    ACS Chem Biol; 2013; 8(6):1223-31. PubMed ID: 23540839
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Prediction of drug-resistance in HIV-1 subtype C based on protease sequences from ART naive and first-line treatment failures in North India using genotypic and docking analysis.
    Toor JS; Sharma A; Kumar R; Gupta P; Garg P; Arora SK
    Antiviral Res; 2011 Nov; 92(2):213-8. PubMed ID: 21875619
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y; Li D; Ji B; Shi X; Gao H
    J Mol Graph Model; 2010 Sep; 29(2):171-7. PubMed ID: 20580296
    [TBL] [Abstract][Full Text] [Related]  

  • 85. CoRILISA: a local similarity based receptor dependent QSAR method.
    Khedkar VM; Coutinho EC
    J Chem Inf Model; 2015 Jan; 55(1):194-205. PubMed ID: 25535645
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Comparative molecular field analysis of a series of inhibitors of HIV-1 protease.
    Ferreira LG; Leitão A; Montanari CA; Andricopulo AD
    Med Chem; 2011 Mar; 7(2):71-9. PubMed ID: 21222610
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Efficient molecular docking of NMR structures: application to HIV-1 protease.
    Huang SY; Zou X
    Protein Sci; 2007 Jan; 16(1):43-51. PubMed ID: 17123961
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Constructing Interconsistent, Reasonable, and Predictive Models for Both the Kinetic and Thermodynamic Properties of HIV-1 Protease Inhibitors.
    Qu S; Huang S; Pan X; Yang L; Mei H
    J Chem Inf Model; 2016 Oct; 56(10):2061-2068. PubMed ID: 27624663
    [TBL] [Abstract][Full Text] [Related]  

  • 89. HIV-1 protease inhibitors: a comparative QSAR analysis.
    Kurup A; Mekapati SB; Garg R; Hansch C
    Curr Med Chem; 2003 Sep; 10(17):1679-88. PubMed ID: 12871116
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Towards designing of a potential new HIV-1 protease inhibitor using QSAR study in combination with Molecular docking and Molecular dynamics simulations.
    Baassi M; Moussaoui M; Soufi H; Rajkhowa S; Sharma A; Sinha S; Belaaouad S
    PLoS One; 2023; 18(4):e0284539. PubMed ID: 37079533
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterization of Nine Compounds Isolated from the Acid Hydrolysate of
    Wang X; Wei Y; Tian WY; Sakharkar MK; Liu Q; Yang X; Zhou YZ; Mou CL; Cai GL; Yang J
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835661
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Possible allosteric interactions of monoindazole-substituted P2 cyclic urea analogues with wild-type and mutant HIV-1 protease.
    Garg R; Bhhatarai B
    J Comput Aided Mol Des; 2008 Oct; 22(10):737-45. PubMed ID: 18368496
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fragment-Based QSAR and Structural Analysis of a Series of Hydroxyethylamine Derivatives as HIV-1 Protease Inhibitors.
    Ferreira LG; Andricopulo AD
    Comb Chem High Throughput Screen; 2015; 18(5):464-75. PubMed ID: 25961662
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Synthesis and Biological Evaluation of 3,9-Dioxatetraasteranes as C
    Li P; Wang S; Wang H; Yan H
    Biol Pharm Bull; 2019; 42(2):261-267. PubMed ID: 30713256
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Drug Resistance in the HIV-1 Subtype C Protease Enzyme: A High Throughput Virtual Screening Approach in Search of New Ligands with Activity.
    Sarron A; Lobb KA
    Med Chem; 2022; 18(9):970-979. PubMed ID: 35114926
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Multistage virtual screening and identification of novel HIV-1 protease inhibitors by integrating SVM, shape, pharmacophore and docking methods.
    Wei Y; Li J; Chen Z; Wang F; Huang W; Hong Z; Lin J
    Eur J Med Chem; 2015 Aug; 101():409-18. PubMed ID: 26185005
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Anti HIV-1 agents 6. Synthesis and anti-HIV-1 activity of indolyl glyoxamides.
    Wang Y; Huang N; Yu X; Yang LM; Zhi XY; Zheng YT; Xu H
    Med Chem; 2012 Sep; 8(5):831-3. PubMed ID: 22741604
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Optimized Virtual Screening Workflow: Towards Target-Based Polynomial Scoring Functions for HIV-1 Protease.
    Pintro VO; de Azevedo WF
    Comb Chem High Throughput Screen; 2017; 20(9):820-827. PubMed ID: 29165067
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Influences of the size and hydroxyl number of fullerenes/fullerenols on their interactions with proteins.
    Wu X; Yang ST; Wang H; Wang L; Hu W; Cao A; Liu Y
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6298-304. PubMed ID: 21137722
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Computational studies on HIV-1 protease inhibitors: influence of calculated inhibitor-enzyme binding affinities on the statistical quality of 3D-QSAR CoMFA models.
    Jayatilleke PR; Nair AC; Zauhar R; Welsh WJ
    J Med Chem; 2000 Nov; 43(23):4446-51. PubMed ID: 11087569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.