These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 23900448)
1. Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility. Chien KB; Chung EJ; Shah RN J Biomater Appl; 2014 Mar; 28(7):1085-96. PubMed ID: 23900448 [TBL] [Abstract][Full Text] [Related]
2. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Yu L; Zhang Z; Zhang H; Ding J Biomacromolecules; 2010 Aug; 11(8):2169-78. PubMed ID: 20690723 [TBL] [Abstract][Full Text] [Related]
3. In vivo acute and humoral response to three-dimensional porous soy protein scaffolds. Chien KB; Aguado BA; Bryce PJ; Shah RN Acta Biomater; 2013 Nov; 9(11):8983-90. PubMed ID: 23851173 [TBL] [Abstract][Full Text] [Related]
4. Mechanical and microstructural properties of hybrid poly(ethylene glycol)-soy protein hydrogels for wound dressing applications. Snyders R; Shingel KI; Zabeida O; Roberge C; Faure MP; Martinu L; Klemberg-Sapieha JE J Biomed Mater Res A; 2007 Oct; 83(1):88-97. PubMed ID: 17380500 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and biocompatibility of novel bilayer scaffold for skin tissue engineering applications. Franco RA; Min YK; Yang HM; Lee BT J Biomater Appl; 2013 Jan; 27(5):605-15. PubMed ID: 22071350 [TBL] [Abstract][Full Text] [Related]
6. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
7. In situ forming hydrogels based on tyramine conjugated 4-Arm-PPO-PEO via enzymatic oxidative reaction. Park KM; Shin YM; Joung YK; Shin H; Park KD Biomacromolecules; 2010 Mar; 11(3):706-12. PubMed ID: 20121075 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Wu DQ; Wang T; Lu B; Xu XD; Cheng SX; Jiang XJ; Zhang XZ; Zhuo RX Langmuir; 2008 Sep; 24(18):10306-12. PubMed ID: 18680318 [TBL] [Abstract][Full Text] [Related]
9. Characterization of dextrin-based hydrogels: rheology, biocompatibility, and degradation. Carvalho J; Moreira S; Maia J; Gama FM J Biomed Mater Res A; 2010 Apr; 93(1):389-99. PubMed ID: 19569221 [TBL] [Abstract][Full Text] [Related]
10. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Cai S; Liu Y; Zheng Shu X; Prestwich GD Biomaterials; 2005 Oct; 26(30):6054-67. PubMed ID: 15958243 [TBL] [Abstract][Full Text] [Related]
11. In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Norton LW; Tegnell E; Toporek SS; Reichert WM Biomaterials; 2005 Jun; 26(16):3285-97. PubMed ID: 15603824 [TBL] [Abstract][Full Text] [Related]
12. Photo-cross-linked hydrogels from thermoresponsive PEGMEMA-PPGMA-EGDMA copolymers containing multiple methacrylate groups: mechanical property, swelling, protein release, and cytotoxicity. Tai H; Howard D; Takae S; Wang W; Vermonden T; Hennink WE; Stayton PS; Hoffman AS; Endruweit A; Alexander C; Howdle SM; Shakesheff KM Biomacromolecules; 2009 Oct; 10(10):2895-903. PubMed ID: 19746967 [TBL] [Abstract][Full Text] [Related]
13. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system. Molinos M; Carvalho V; Silva DM; Gama FM Biomacromolecules; 2012 Feb; 13(2):517-27. PubMed ID: 22288730 [TBL] [Abstract][Full Text] [Related]
15. Physical properties and biocompatibility of chitosan/soy blended membranes. Silva SS; Santos MI; Coutinho OP; Mano JF; Reis RL J Mater Sci Mater Med; 2005 Jun; 16(6):575-9. PubMed ID: 15928874 [TBL] [Abstract][Full Text] [Related]
16. Biomedical applications of soy protein: A brief overview. Tansaz S; Boccaccini AR J Biomed Mater Res A; 2016 Feb; 104(2):553-69. PubMed ID: 26402327 [TBL] [Abstract][Full Text] [Related]
17. Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Li NN; Fu CP; Zhang LM Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():287-93. PubMed ID: 24433914 [TBL] [Abstract][Full Text] [Related]
19. Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications. Potta T; Chun C; Song SC Biomaterials; 2009 Oct; 30(31):6178-92. PubMed ID: 19709738 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]