BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 23900527)

  • 21. Frequency dependence of surface acoustic wave swimming.
    Pouya C; Hoggard K; Gossage SH; Peter HR; Poole T; Nash GR
    J R Soc Interface; 2019 Jun; 16(155):20190113. PubMed ID: 31213171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell detachment and label-free cell sorting using modulated surface acoustic waves (SAWs) in droplet-based microfluidics.
    Bussonnière A; Miron Y; Baudoin M; Bou Matar O; Grandbois M; Charette P; Renaudin A
    Lab Chip; 2014 Sep; 14(18):3556-63. PubMed ID: 25029952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrafast microfluidics using surface acoustic waves.
    Yeo LY; Friend JR
    Biomicrofluidics; 2009 Jan; 3(1):12002. PubMed ID: 19693383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.
    Wang Z; Zhe J
    Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow.
    Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J
    Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting.
    Collins DJ; Neild A; Ai Y
    Lab Chip; 2016 Feb; 16(3):471-9. PubMed ID: 26646200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simplified fluid-structure coupled analysis of particle movement for designing of microfluidic cell sorter.
    Takagi Y; Kotev V; Yano K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3229-32. PubMed ID: 26736980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors.
    Agostini M; Cecchini M
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33887716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface acoustic wave (SAW) acoustophoresis: now and beyond.
    Lin SC; Mao X; Huang TJ
    Lab Chip; 2012 Aug; 12(16):2766-70. PubMed ID: 22781941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidics for miniaturized laboratories on a chip.
    Franke TA; Wixforth A
    Chemphyschem; 2008 Oct; 9(15):2140-56. PubMed ID: 18932153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate.
    Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG
    Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves.
    Liu Y; Ji M; Yu N; Zhao C; Xue G; Fu W; Qiao X; Zhang Y; Chou X; Geng W
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amontons-Coulomb-like slip dynamics in acousto-microfluidics.
    Quelennec A; Gorman JJ; Reyes DR
    Nat Commun; 2022 Mar; 13(1):1429. PubMed ID: 35318314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementation of guiding layers of surface acoustic wave devices: A review.
    Xu Z; Yuan YJ
    Biosens Bioelectron; 2018 Jan; 99():500-512. PubMed ID: 28823975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study.
    Altay R; Yapici MK; Koşar A
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles.
    Shields CW; Cruz DF; Ohiri KA; Yellen BB; Lopez GP
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27022681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable Acoustic Mixing of Fluids in Microchannels for the Fabrication of Therapeutic Nanoparticles.
    Westerhausen C; Schnitzler LG; Wendel D; Krzysztoń R; Lächelt U; Wagner E; Rädler JO; Wixforth A
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.