BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23900638)

  • 41. Human-specific modulation of transcriptional activity provided by endogenous retroviral insertions.
    Gogvadze E; Stukacheva E; Buzdin A; Sverdlov E
    J Virol; 2009 Jun; 83(12):6098-105. PubMed ID: 19339349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. LTR-retrotransposon transcriptome modulation in response to endotoxin-induced stress in PBMCs.
    Mommert M; Tabone O; Oriol G; Cerrato E; Guichard A; Naville M; Fournier P; Volff JN; Pachot A; Monneret G; Venet F; Brengel-Pesce K; Textoris J; Mallet F
    BMC Genomics; 2018 Jul; 19(1):522. PubMed ID: 29976163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. p53 Binding Sites in Long Terminal Repeat 5Hs (LTR5Hs) of Human Endogenous Retrovirus K Family (HML-2 Subgroup) Play Important Roles in the Regulation of LTR5Hs Transcriptional Activity.
    Liu M; Jia L; Li H; Liu Y; Han J; Wang X; Li T; Li J; Zhang B; Zhai X; Yu C; Li L
    Microbiol Spectr; 2022 Aug; 10(4):e0048522. PubMed ID: 35867400
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The phylogeny of orthoretroviral long terminal repeats (LTRs).
    Benachenhou F; Blikstad V; Blomberg J
    Gene; 2009 Dec; 448(2):134-8. PubMed ID: 19595747
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detecting endogenous retrovirus-driven tissue-specific gene transcription.
    Pavlicev M; Hiratsuka K; Swaggart KA; Dunn C; Muglia L
    Genome Biol Evol; 2015 Mar; 7(4):1082-97. PubMed ID: 25767249
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Full-sized HERV-K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21: map locations and evolutionary history.
    Kurdyukov SG; Lebedev YB; Artamonova II; Gorodentseva TN; Batrak AV; Mamedov IZ; Azhikina TL; Legchilina SP; Efimenko IG; Gardiner K; Sverdlov ED
    Gene; 2001 Jul; 273(1):51-61. PubMed ID: 11483360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human endogenous retrovirus family HERV-K(HML-5): status, evolution, and reconstruction of an ancient betaretrovirus in the human genome.
    Lavie L; Medstrand P; Schempp W; Meese E; Mayer J
    J Virol; 2004 Aug; 78(16):8788-98. PubMed ID: 15280487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon.
    Dunn CA; Medstrand P; Mager DL
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12841-6. PubMed ID: 14534330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of retroviral antisense transcripts and promoter activity of the HERV-K(C4) insertion in the MHC class III region.
    Mack M; Bender K; Schneider PM
    Immunogenetics; 2004 Aug; 56(5):321-32. PubMed ID: 15309346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular cloning and phylogenetic analysis of the human endogenous retrovirus HERV-K long terminal repeat elements in various cancer cells.
    Yi JM; Kim HM; Kim HS
    Mol Cells; 2001 Aug; 12(1):137-41. PubMed ID: 11561724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.
    Sokol M; Jessen KM; Pedersen FS
    APMIS; 2016; 124(1-2):127-39. PubMed ID: 26818267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequence periodic pattern of HERV LTRs: a matrix simulation algorithm.
    Zhang S; Xu J; Wei C
    J Biosci; 2012 Mar; 37(1):19-24. PubMed ID: 22357199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Human genome-specific HERV-K intron LTR genes have a random orientation relative to the direction of transcription, and, possibly, participated in antisense gene expression regulation].
    Buzdin AA; Lebedev IuB; Sverdlov ED
    Bioorg Khim; 2003; 29(1):103-6. PubMed ID: 12659000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer.
    Romanish MT; Cohen CJ; Mager DL
    Semin Cancer Biol; 2010 Aug; 20(4):246-53. PubMed ID: 20685251
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular biology of type A endogenous retrovirus.
    Ono M
    Kitasato Arch Exp Med; 1990 Sep; 63(2-3):77-90. PubMed ID: 1710682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations.
    Macfarlane C; Simmonds P
    J Mol Evol; 2004 Nov; 59(5):642-56. PubMed ID: 15693620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Retroviruses and primate evolution.
    Sverdlov ED
    Bioessays; 2000 Feb; 22(2):161-71. PubMed ID: 10655035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gain of Sp1 sites and loss of repressor sequences associated with a young, transcriptionally active subset of HERV-H endogenous long terminal repeats.
    Nelson DT; Goodchild NL; Mager DL
    Virology; 1996 Jun; 220(1):213-8. PubMed ID: 8659116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of a novel human endogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines.
    Patzke S; Lindeskog M; Munthe E; Aasheim HC
    Virology; 2002 Nov; 303(1):164-73. PubMed ID: 12482668
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EnHERV: Enrichment analysis of specific human endogenous retrovirus patterns and their neighboring genes.
    Tongyoo P; Avihingsanon Y; Prom-On S; Mutirangura A; Mhuantong W; Hirankarn N
    PLoS One; 2017; 12(5):e0177119. PubMed ID: 28472109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.