These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23900912)

  • 1. Applications of catalysts on soluble supports.
    Bergbreiter DE
    Top Curr Chem; 2004; 242():113-76. PubMed ID: 23900912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethylene as a nonvolatile solid cosolvent phase for catalyst separation and recovery.
    Yang Y; Priyadarshani N; Khamatnurova T; Suriboot J; Bergbreiter DE
    J Am Chem Soc; 2012 Sep; 134(36):14714-7. PubMed ID: 22924456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using soluble polymers in latent biphasic systems.
    Bergbreiter DE; Osburn PL; Smith T; Li C; Frels JD
    J Am Chem Soc; 2003 May; 125(20):6254-60. PubMed ID: 12785858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel liquid-phase strategy for organic synthesis using organic ions as soluble supports.
    Huo C; Chan TH
    Chem Soc Rev; 2010 Aug; 39(8):2977-3006. PubMed ID: 20480066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using soluble polymers to enforce catalyst-phase-selective solubility and as antileaching agents to facilitate homogeneous catalysis.
    Liang Y; Harrell ML; Bergbreiter DE
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8084-7. PubMed ID: 24888338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer supports in organic catalysis and synthesis.
    Bergbreiter DE
    Curr Opin Drug Discov Devel; 2001 Nov; 4(6):736-44. PubMed ID: 11899613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(4-tert-butylstyrene) as a soluble polymer support in homogeneous catalysis.
    Bergbreiter DE; Li C
    Org Lett; 2003 Jul; 5(14):2445-7. PubMed ID: 12841751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis.
    Miao W; Chan TH
    Acc Chem Res; 2006 Dec; 39(12):897-908. PubMed ID: 17176028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous catalysts supported on soluble polymers: biphasic Suzuki-Miyaura coupling of aryl chlorides using phase-tagged palladium-phosphine catalysts.
    an der Heiden M; Plenio H
    Chemistry; 2004 Apr; 10(7):1789-97. PubMed ID: 15054766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A recyclable catalyst that precipitates at the end of the reaction.
    Dioumaev VK; Bullock RM
    Nature; 2003 Jul; 424(6948):530-2. PubMed ID: 12891351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyolefin-supported recoverable/reusable Cr(III)-salen catalysts.
    Bergbreiter DE; Hobbs C; Hongfa C
    J Org Chem; 2011 Jan; 76(2):523-33. PubMed ID: 21192646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous catalysts supported on soluble polymers: biphasic Sonogashira coupling of aryl halides and acetylenes using MeOPEG-bound phosphine-palladium catalysts for efficient catalyst recycling.
    Köllhofer A; Plenio H
    Chemistry; 2003 Mar; 9(6):1416-25. PubMed ID: 12645031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of molecular catalysts in supported ionic liquid phases.
    Van Doorslaer C; Wahlen J; Mertens P; Binnemans K; De Vos D
    Dalton Trans; 2010 Sep; 39(36):8377-90. PubMed ID: 20419187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts.
    Heldebrant DJ; Jessop PG
    J Am Chem Soc; 2003 May; 125(19):5600-1. PubMed ID: 12733876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modern separation techniques for the efficient workup in organic synthesis.
    Tzschucke CC; Markert C; Bannwarth W; Roller S; Hebel A; Haag R
    Angew Chem Int Ed Engl; 2002 Nov; 41(21):3964-4000. PubMed ID: 12412063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on applications of N-substituted main-chain NHC-palladium polymers as recyclable self-supported catalysts for the Suzuki-Miyaura coupling of aryl chlorides in water.
    Karimi B; Akhavan PF
    Inorg Chem; 2011 Jul; 50(13):6063-72. PubMed ID: 21648445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New developments in polymer-supported reagents, scavengers and catalysts for organic synthesis.
    Bhattacharyya S
    Curr Opin Drug Discov Devel; 2004 Nov; 7(6):752-64. PubMed ID: 15595436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents.
    Castell OK; Allender CJ; Barrow DA
    Biosens Bioelectron; 2006 Oct; 22(4):526-33. PubMed ID: 16938448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized Polymers-Emerging Versatile Tools for Solution-Phase Chemistry and Automated Parallel Synthesis.
    Kirschning A; Monenschein H; Wittenberg R
    Angew Chem Int Ed Engl; 2001 Feb; 40(4):650-679. PubMed ID: 11241594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.