These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 23901033)
1. Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Svobodová E; Trnka M; Dubrovský M; Semerádová D; Eitzinger J; Stěpánek P; Zalud Z Pest Manag Sci; 2014 May; 70(5):708-15. PubMed ID: 23901033 [TBL] [Abstract][Full Text] [Related]
2. Projecting the Global Potential Distribution of Cydia pomonella (Lepidoptera: Tortricidae) Under Historical and RCP4.5 Climate Scenarios. Guo S; Ge X; Zou Y; Zhou Y; Wang T; Zong S J Insect Sci; 2021 Mar; 21(2):. PubMed ID: 33844017 [TBL] [Abstract][Full Text] [Related]
3. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Crespo-Pérez V; Régnière J; Chuine I; Rebaudo F; Dangles O Glob Chang Biol; 2015 Jan; 21(1):82-96. PubMed ID: 24920187 [TBL] [Abstract][Full Text] [Related]
4. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Berzitis EA; Minigan JN; Hallett RH; Newman JA Glob Chang Biol; 2014 Sep; 20(9):2778-92. PubMed ID: 24616016 [TBL] [Abstract][Full Text] [Related]
5. Modelling distribution in European stream macroinvertebrates under future climates. Domisch S; Araújo MB; Bonada N; Pauls SU; Jähnig SC; Haase P Glob Chang Biol; 2013 Mar; 19(3):752-62. PubMed ID: 23504833 [TBL] [Abstract][Full Text] [Related]
6. Modelling as a tool for analysing the temperature-dependent future of the Colorado potato beetle in Europe. Jönsson AM; Pulatov B; Linderson ML; Hall K Glob Chang Biol; 2013 Apr; 19(4):1043-55. PubMed ID: 23504882 [TBL] [Abstract][Full Text] [Related]
7. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming. Ma G; Ma CS J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662 [TBL] [Abstract][Full Text] [Related]
8. Predicting possible distribution of rice leaf roller (Cnaphalocrocis medinalis) under climate change scenarios using MaxEnt model in China. Zhao Y; Zhang L; Wang C Sci Rep; 2024 Sep; 14(1):21245. PubMed ID: 39261484 [TBL] [Abstract][Full Text] [Related]
9. Modelling the potential distribution of Bemisia tabaci in Europe in light of the climate change scenario. Gilioli G; Pasquali S; Parisi S; Winter S Pest Manag Sci; 2014 Oct; 70(10):1611-23. PubMed ID: 24458692 [TBL] [Abstract][Full Text] [Related]
10. Expected shifts in Fusarium species' composition on cereal grain in Northern Europe due to climatic change. Parikka P; Hakala K; Tiilikkala K Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1543-55. PubMed ID: 22554046 [TBL] [Abstract][Full Text] [Related]
11. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia. González C; Paz A; Ferro C Acta Trop; 2014 Jan; 129():83-90. PubMed ID: 23988300 [TBL] [Abstract][Full Text] [Related]
12. Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario and climate model choice. Ziter C; Robinson EA; Newman JA Glob Chang Biol; 2012 Sep; 18(9):2771-80. PubMed ID: 24501055 [TBL] [Abstract][Full Text] [Related]
13. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Thaler R; Brandstätter A; Meraner A; Chabicovski M; Parson W; Zelger R; Dalla Via J; Dallinger R Mol Phylogenet Evol; 2008 Sep; 48(3):838-49. PubMed ID: 18619861 [TBL] [Abstract][Full Text] [Related]
14. Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna. Marini MA; Barbet-Massin M; Lopes LE; Jiguet F Conserv Biol; 2009 Dec; 23(6):1558-67. PubMed ID: 19500118 [TBL] [Abstract][Full Text] [Related]
15. Climate change, host plant availability, and irrigation shape future region-specific distributions of the Sitobion grain aphid complex. Wang BX; Hof AR; Matson KD; van Langevelde F; Ma CS Pest Manag Sci; 2023 Jul; 79(7):2311-2324. PubMed ID: 36792531 [TBL] [Abstract][Full Text] [Related]
16. Breeding distributions of north American bird species moving north as a result of climate change. Hitch AT; Leberg PL Conserv Biol; 2007 Apr; 21(2):534-9. PubMed ID: 17391203 [TBL] [Abstract][Full Text] [Related]
17. Climate change impacts on insect pests for high value specialty crops in California. Jha PK; Zhang N; Rijal JP; Parker LE; Ostoja S; Pathak TB Sci Total Environ; 2024 Jan; 906():167605. PubMed ID: 37802357 [TBL] [Abstract][Full Text] [Related]
18. Downscaling Pest Risk Analyses: Identifying Current and Future Potentially Suitable Habitats for Parthenium hysterophorus with Particular Reference to Europe and North Africa. Kriticos DJ; Brunel S; Ota N; Fried G; Oude Lansink AG; Panetta FD; Prasad TV; Shabbir A; Yaacoby T PLoS One; 2015; 10(9):e0132807. PubMed ID: 26325680 [TBL] [Abstract][Full Text] [Related]
19. Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. Svenning JC; Fløjgaard C; Baselga A J Anim Ecol; 2011 Mar; 80(2):393-402. PubMed ID: 21070238 [TBL] [Abstract][Full Text] [Related]
20. Forecasting habitat suitability and niche shifts of two global maize pests: Ostrinia furnacalis and Ostrinia nubilalis (Lepidoptera: Crambidae). Li B; Dopman EB; Dong Y; Yang Z Pest Manag Sci; 2024 Oct; 80(10):5286-5298. PubMed ID: 38924623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]