These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 2390112)

  • 21. Adenosine inhibition of isolated rabbit ileum and antagonism by theophylline.
    Ally AI; Nakatsu K
    J Pharmacol Exp Ther; 1976 Oct; 199(1):208-15. PubMed ID: 185359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antagonism of morphine action on brain acetylcholine release by methylxanthines and calcium.
    Jhamandas K; Sawynok J; Sutak M
    Eur J Pharmacol; 1978 Jun; 49(3):309-12. PubMed ID: 658146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methylxanthines and the kidney.
    Osswald H; Schnermann J
    Handb Exp Pharmacol; 2011; (200):391-412. PubMed ID: 20859805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the mechanism by which methylxanthines enhance apomorphine-induced rotation behaviour in the rat.
    Fredholm BB; Herrera-Marschitz M; Jonzon B; Lindström K; Ungerstedt U
    Pharmacol Biochem Behav; 1983 Sep; 19(3):535-41. PubMed ID: 6634904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upregulated renal adenosine A1 receptors augment PKC and glucose transport but inhibit proliferation.
    Coulson R; Proch PS; Olsson RA; Chalfant CE; Cooper DR
    Am J Physiol; 1996 Feb; 270(2 Pt 2):F263-74. PubMed ID: 8779886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines.
    Daly JW; Butts-Lamb P; Padgett W
    Cell Mol Neurobiol; 1983 Mar; 3(1):69-80. PubMed ID: 6309393
    [No Abstract]   [Full Text] [Related]  

  • 27. Discriminative stimulus properties of methylxanthines and their metabolites in rats.
    Carney JM; Holloway FA; Modrow HE
    Life Sci; 1985 Mar; 36(10):913-20. PubMed ID: 3974401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of caffeine, theophylline and nicotine on D-glucose and folate transport in rat jejunal brush border membrane vesicles.
    Ling KY; Faust RG
    Int J Biochem; 1982; 14(12):1047-50. PubMed ID: 7173486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of phorbol 12,13-diacetate on responses of guinea-pig isolated trachea to methylxanthines, isoprenaline and ryanodine.
    Cortijo J; Sanz CM; Villagrasa V; Morcillo EJ; Small RC
    Br J Pharmacol; 1994 Mar; 111(3):769-76. PubMed ID: 8019755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biphasic effect of methylxanthines on acetylcholine release from electrically-stimulated brain slices.
    Pedata F; Pepeu G; Spignoli G
    Br J Pharmacol; 1984 Sep; 83(1):69-73. PubMed ID: 6487897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between methylxanthines and the benzodiazepine receptor.
    Weir RL; Hruska RE
    Arch Int Pharmacodyn Ther; 1983 Sep; 265(1):42-8. PubMed ID: 6316862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of methylxanthines on lactational performance of rats.
    Hart AD; Grimble RF
    Ann Nutr Metab; 1990; 34(5):297-302. PubMed ID: 2244750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of the A1 adenosine receptor increases insulin-stimulated glucose transport in isolated rat soleus muscle.
    Thong FS; Lally JS; Dyck DJ; Greer F; Bonen A; Graham TE
    Appl Physiol Nutr Metab; 2007 Aug; 32(4):701-10. PubMed ID: 17622285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insulin stimulation of glucose transport in isolated rat adipocytes. Functional evidence for insulin activation of intrinsic transporter activity within the plasma membrane.
    Hyslop PA; Kuhn CE; Sauerheber RD
    Biochem J; 1985 Nov; 232(1):245-54. PubMed ID: 3910027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3-L1 adipocytes.
    Nakabayashi H; Hashimoto T; Ashida H; Nishiumi S; Kanazawa K
    Biofactors; 2008; 34(4):293-302. PubMed ID: 19850984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of the transport of adenosine, other nucleosides and hypoxanthine in novikoff rat hepatoma cells by methylxanthines, papaverine, N6-cyclohexyladenosine and N6-phenylisopropyladenosine.
    Plagemann PG; Wohlhueter RM
    Biochem Pharmacol; 1984 Jun; 33(11):1783-8. PubMed ID: 6203540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antagonism of enkephalin action on acetylcholine release by methylxanthines: lack of a purine link.
    Elliott J; Jhamandas K; Notman H; Sutak M
    Br J Pharmacol; 1983 Dec; 80(4):727-34. PubMed ID: 6571228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antilipolytic effect of adenosine in isolated perifused fat cells.
    Hjemdahl P; Sollevi A
    Acta Physiol Scand; 1978 Jul; 103(3):270-4. PubMed ID: 726923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of chronic caffeine administration on peripheral adenosine receptors.
    Zhang Y; Wells JN
    J Pharmacol Exp Ther; 1990 Sep; 254(3):757-63. PubMed ID: 2395110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of methylxanthines on morphine analgesia in mice and rats.
    Malec D; Michalska E
    Pol J Pharmacol Pharm; 1988; 40(3):223-32. PubMed ID: 3241763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.