These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 2390116)
1. Inhibition of protein synthesis in neoplastic cells by rhein. Castiglione S; Paggi MG; Delpino A; Zeuli M; Floridi A Biochem Pharmacol; 1990 Sep; 40(5):967-73. PubMed ID: 2390116 [TBL] [Abstract][Full Text] [Related]
2. Protein synthetic activity and adenylate energy charge in Rhein-treated cultured human glioma cells. Delpino A; Paggi MG; Gentile PF; Castiglione S; Bruno T; Benass M; Floridi A Cancer Biochem Biophys; 1992 May; 12(4):241-52. PubMed ID: 1423210 [TBL] [Abstract][Full Text] [Related]
3. Rhein inhibits glucose uptake in Ehrlich ascites tumor cells by alteration of membrane-associated functions. Castiglione S; Fanciulli M; Bruno T; Evangelista M; Del Carlo C; Paggi MG; Chersi A; Floridi A Anticancer Drugs; 1993 Jun; 4(3):407-14. PubMed ID: 8358069 [TBL] [Abstract][Full Text] [Related]
4. Effect of lonidamine on protein synthesis in neoplastic cells. Floridi A; Delpino A; Nista A; Feriozzi R; Marcante ML; Silvestrini B; Caputo A Exp Mol Pathol; 1985 Jun; 42(3):293-305. PubMed ID: 3996552 [TBL] [Abstract][Full Text] [Related]
5. Membrane and cytoskeleton are intracellular targets of rhein in A431 cells. Iosi F; Santini MT; Malorni W Anticancer Res; 1993; 13(2):545-54. PubMed ID: 8390805 [TBL] [Abstract][Full Text] [Related]
6. Effect of rhein on the glucose metabolism of Ehrlich ascites tumor cells. Floridi A; Castiglione S; Bianchi C; Mancini A Biochem Pharmacol; 1990 Jul; 40(2):217-22. PubMed ID: 2375763 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of membrane redox activity by rhein and adriamycin in human glioma cells. Fanciulli M; Gentile FP; Bruno T; Paggi MG; Benassi M; Floridi A Anticancer Drugs; 1992 Dec; 3(6):615-21. PubMed ID: 1337705 [TBL] [Abstract][Full Text] [Related]
8. Growth inhibition by rhein and lonidamine of human glioma cells in vitro. Floridi A; Gentile FP; Bruno T; Castiglione S; Zeuli M; Benassi M Anticancer Res; 1990; 10(6):1633-6. PubMed ID: 2285235 [TBL] [Abstract][Full Text] [Related]
9. Excretion and distribution of [14C]rhein and [14C]rhein anthrone in rat. De Witte P; Lemli J J Pharm Pharmacol; 1988 Sep; 40(9):652-5. PubMed ID: 2907037 [TBL] [Abstract][Full Text] [Related]
10. The influence of rhein on the biosynthesis of prostaglandin-like substances in-vitro. Franchi-Micheli S; Lavacchi L; Friedmann CA; Zilletti L J Pharm Pharmacol; 1983 Apr; 35(4):262-4. PubMed ID: 6133942 [No Abstract] [Full Text] [Related]
11. A dielectric relaxation study on the effects of the antitumor drugs Lonidamine and Rhein on the membrane electrical properties of Ehrlich ascites tumor cells. Santini MT; Cametti C; Zimatore G; Malorni W; Benassi M; Gentile FP; Floridi A; Indovina PL Anticancer Res; 1995; 15(1):29-36. PubMed ID: 7733637 [TBL] [Abstract][Full Text] [Related]
12. Sites of inhibition of mitochondrial electron transport by rhein. Floridi A; Castiglione S; Bianchi C Biochem Pharmacol; 1989 Mar; 38(5):743-51. PubMed ID: 2522779 [TBL] [Abstract][Full Text] [Related]
13. Effect of lonidamine and rhein on the phosphorylation potential generated by respiring rat liver mitochondria. Miccadei S; Pulselli R; Floridi A Anticancer Res; 1993; 13(5A):1507-10. PubMed ID: 7902063 [TBL] [Abstract][Full Text] [Related]
14. Rhein reverses doxorubicin resistance in SMMC-7721 liver cancer cells by inhibiting energy metabolism and inducing mitochondrial permeability transition pore opening. Wu L; Cao K; Ni Z; Wang S; Li W; Liu X; Chen Z Biofactors; 2019 Jan; 45(1):85-96. PubMed ID: 30496631 [TBL] [Abstract][Full Text] [Related]
15. Simple method for the determination of rhein in biological fluids by high-performance liquid chromatography. Springolo V; Coppi G J Chromatogr; 1988 Jun; 428(1):173-7. PubMed ID: 3170672 [No Abstract] [Full Text] [Related]
16. Role of the adenylate system and glycolytic flux in the control of protein synthesis in isolated rat lung cells. Martínez-Izquierdo JA; Martín-Requero A; Ayuso MS; Parrilla R Biochim Biophys Acta; 1982 Oct; 721(2):208-17. PubMed ID: 6291628 [TBL] [Abstract][Full Text] [Related]
17. Rhein inhibits TPA-induced activator protein-1 activation and cell transformation by blocking the JNK-dependent pathway. Lin S; Li JJ; Fujii M; Hou DX Int J Oncol; 2003 Apr; 22(4):829-33. PubMed ID: 12632075 [TBL] [Abstract][Full Text] [Related]
18. Rhein antagonizes P2X7 receptor in rat peritoneal macrophages. Hu F; Xing F; Zhu G; Xu G; Li C; Qu J; Lee I; Pan L Sci Rep; 2015 Sep; 5():14012. PubMed ID: 26354875 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of glioma progression by a newly discovered CD38 inhibitor. Blacher E; Ben Baruch B; Levy A; Geva N; Green KD; Garneau-Tsodikova S; Fridman M; Stein R Int J Cancer; 2015 Mar; 136(6):1422-33. PubMed ID: 25053177 [TBL] [Abstract][Full Text] [Related]
20. Cytotoxic effect of the association of BCNU with rhein or lonidamine on a human glioma cell line. Floridi A; Gentile PF; Bruno T; Fanciulli M; Paggi MG; Zeuli M; Benassi M Anticancer Res; 1991; 11(2):789-92. PubMed ID: 1648334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]