BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23901831)

  • 21. Population analysis of Magnaporthe oryzae by using endogenous repetitive DNA sequences and mating-type alleles in different districts of Karnataka, India.
    Jagadeesh D; Prasanna Kumar MK; Devaki NS
    J Appl Genet; 2018 Aug; 59(3):365-375. PubMed ID: 29971754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of the wheat blast fungus through functional losses in a host specificity determinant.
    Inoue Y; Vy TTP; Yoshida K; Asano H; Mitsuoka C; Asuke S; Anh VL; Cumagun CJR; Chuma I; Terauchi R; Kato K; Mitchell T; Valent B; Farman M; Tosa Y
    Science; 2017 Jul; 357(6346):80-83. PubMed ID: 28684523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fine-Scale Population Genetic Structure and Within-Tree Distribution of Mating Types of Venturia effusa, Cause of Pecan Scab in the United States.
    Bock CH; Young CA; Stevenson KL; Charlton ND
    Phytopathology; 2018 Nov; 108(11):1326-1336. PubMed ID: 29771192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat.
    Inoue Y; Vy TTP; Tani D; Tosa Y
    New Phytol; 2021 Jan; 229(1):488-500. PubMed ID: 32852846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AVR1-CO39 is a predominant locus governing the broad avirulence of Magnaporthe oryzae 2539 on cultivated rice (Oryza sativa L.).
    Zheng Y; Zheng W; Lin F; Zhang Y; Yi Y; Wang B; Lu G; Wang Z; Wu W
    Mol Plant Microbe Interact; 2011 Jan; 24(1):13-7. PubMed ID: 20879839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic structure of Phaeosphaeria nodorum populations in the north-central and midwestern United States.
    Adhikari TB; Ali S; Burlakoti RR; Singh PK; Mergoum M; Goodwin SB
    Phytopathology; 2008 Jan; 98(1):101-7. PubMed ID: 18943244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic differentiation of Puccinia triticina populations in the Middle East and genetic similarity with populations in Central Asia.
    Kolmer JA; Ordoñez ME; Manisterski J; Anikster Y
    Phytopathology; 2011 Jul; 101(7):870-7. PubMed ID: 21303212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on genetic diversity of Magnaporthe grisea using PCR and determination of the mating type alleles distribution in Mazandaran province, Iran.
    Hemmati R; Javan-Nikkhah M; Okovvat SM; Ghazanfari K
    Commun Agric Appl Biol Sci; 2005; 70(3):311-3. PubMed ID: 16637192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae.
    Tosa Y; Osue J; Eto Y; Oh HS; Nakayashiki H; Mayama S; Leong SA
    Mol Plant Microbe Interact; 2005 Nov; 18(11):1148-60. PubMed ID: 16353550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene.
    Kang S; Lebrun MH; Farrall L; Valent B
    Mol Plant Microbe Interact; 2001 May; 14(5):671-4. PubMed ID: 11332731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preliminary Assessment of Resistance Among U.S. Wheat Cultivars to the Triticum Pathotype of Magnaporthe oryzae.
    Cruz CD; Bockus WW; Stack JP; Tang X; Valent B; Pedley KF; Peterson GL
    Plant Dis; 2012 Oct; 96(10):1501-1505. PubMed ID: 30727304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geographic limits of a clonal population of wheat yellow rust in the Mediterranean region.
    Bahri B; Leconte M; Ouffroukh A; De Vallavieille-Pope C; Enjalbert J
    Mol Ecol; 2009 Oct; 18(20):4165-79. PubMed ID: 19769694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of
    Asuke S; Horie A; Komatsu K; Mori R; Vy TTP; Inoue Y; Jiang Y; Tatematsu Y; Shimizu M; Tosa Y
    Mol Plant Microbe Interact; 2023 Nov; 36(11):716-725. PubMed ID: 37432132
    [No Abstract]   [Full Text] [Related]  

  • 34. Assessment of the Virulence Spectrum and Its Association with Genetic Diversity in Magnaporthe oryzae Populations from Sub-Saharan Africa.
    Mutiga SK; Rotich F; Ganeshan VD; Mwongera DT; Mgonja EM; Were VM; Harvey JW; Zhou B; Wasilwa L; Feng C; Ouédraogo I; Wang GL; Mitchell TK; Talbot NJ; Correll JC
    Phytopathology; 2017 Jul; 107(7):852-863. PubMed ID: 28368237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form net blotch of barley.
    Liu ZH; Zhong S; Stasko AK; Edwards MC; Friesen TL
    Phytopathology; 2012 May; 102(5):539-46. PubMed ID: 22494251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice.
    Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B
    Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MGOS: development of a community annotation database for Magnaporthe oryzae.
    Kour A; Greer K; Valent B; Orbach MJ; Soderlund C
    Mol Plant Microbe Interact; 2012 Mar; 25(3):271-8. PubMed ID: 22074346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Risk of Wheat Blast in Rice-Wheat Co-Planting Regions in China: MoO Strains of
    Shizhen W; Jiaoyu W; Zhen Z; Zhongna H; Xueming Z; Rongyao C; Haiping Q; Yanli W; Fucheng L; Guochang S
    Phytopathology; 2021 Aug; 111(8):1393-1400. PubMed ID: 33471560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cell cycle gene MoCDC15 regulates hyphal growth, asexual development and plant infection in the rice blast pathogen Magnaporthe oryzae.
    Goh J; Kim KS; Park J; Jeon J; Park SY; Lee YH
    Fungal Genet Biol; 2011 Aug; 48(8):784-92. PubMed ID: 21600998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction.
    Takan JP; Chipili J; Muthumeenakshi S; Talbot NJ; Manyasa EO; Bandyopadhyay R; Sere Y; Nutsugah SK; Talhinhas P; Hossain M; Brown AE; Sreenivasaprasad S
    Mol Biotechnol; 2012 Feb; 50(2):145-58. PubMed ID: 21701860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.