BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23901849)

  • 41. Microbiota disruption leads to reduced cold tolerance in Drosophila flies.
    Henry Y; Colinet H
    Naturwissenschaften; 2018 Sep; 105(9-10):59. PubMed ID: 30291448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selection for cold resistance alters gene transcript levels in Drosophila melanogaster.
    Telonis-Scott M; Hallas R; McKechnie SW; Wee CW; Hoffmann AA
    J Insect Physiol; 2009 Jun; 55(6):549-55. PubMed ID: 19232407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Warm periods in repeated cold stresses protect Drosophila against ionoregulatory collapse, chilling injury, and reproductive deficits.
    El-Saadi MI; Ritchie MW; Davis HE; MacMillan HA
    J Insect Physiol; 2020; 123():104055. PubMed ID: 32380094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster.
    Sørensen JG; Loeschcke V; Kristensen TN
    J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of photoperiodically induced reproductive diapause and cold hardening on the cold tolerance of Drosophila montana.
    Vesala L; Hoikkala A
    J Insect Physiol; 2011 Jan; 57(1):46-51. PubMed ID: 20932841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A proline repeat polymorphism of the Frost gene of Drosophila melanogaster showing clinal variation but not associated with cold resistance.
    Hoffmann AA; Blacket MJ; McKechnie SW; Rako L; Schiffer M; Rane RV; Good RT; Robin C; Lee SF
    Insect Mol Biol; 2012 Aug; 21(4):437-45. PubMed ID: 22708613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteomic characterization of inbreeding-related cold sensitivity in Drosophila melanogaster.
    Vermeulen CJ; Pedersen KS; Beck HC; Petersen J; Gagalova KK; Loeschcke V
    PLoS One; 2013; 8(5):e62680. PubMed ID: 23658762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster.
    Norry FM; Gomez FH; Loeschcke V
    Mol Ecol; 2007 Aug; 16(15):3274-84. PubMed ID: 17651203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster.
    Ransberry VE; MacMillan HA; Sinclair BJ
    Physiol Biochem Zool; 2011; 84(6):553-9. PubMed ID: 22030848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cold adaptation does not alter ATP homeostasis during cold exposure in Drosophila melanogaster.
    Williams CM; Rocca JR; Edison AS; Allison DB; Morgan TJ; Hahn DA
    Integr Zool; 2018 Jul; 13(4):471-481. PubMed ID: 29722155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel gene that is up-regulated during recovery from cold shock in Drosophila melanogaster.
    Goto SG
    Gene; 2001 May; 270(1-2):259-64. PubMed ID: 11404024
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genomic knockout of hsp23 both decreases and increases fitness under opposing thermal extremes in Drosophila melanogaster.
    Gu X; Chen W; Perry T; Batterham P; Hoffmann AA
    Insect Biochem Mol Biol; 2021 Dec; 139():103652. PubMed ID: 34562590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chill-tolerant Gryllus crickets maintain ion balance at low temperatures.
    Coello Alvarado LE; MacMillan HA; Sinclair BJ
    J Insect Physiol; 2015 Jun; 77():15-25. PubMed ID: 25846013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in
    Yerushalmi GY; Misyura L; MacMillan HA; Donini A
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.
    Williams CM; McCue MD; Sunny NE; Szejner-Sigal A; Morgan TJ; Allison DB; Hahn DA
    Proc Biol Sci; 2016 Sep; 283(1838):. PubMed ID: 27605506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster.
    Andersen LH; Kristensen TN; Loeschcke V; Toft S; Mayntz D
    J Insect Physiol; 2010 Apr; 56(4):336-40. PubMed ID: 19931279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative Phosphoproteomics Reveals Signaling Mechanisms Associated with Rapid Cold Hardening in a Chill-Tolerant Fly.
    Teets NM; Denlinger DL
    J Proteome Res; 2016 Aug; 15(8):2855-62. PubMed ID: 27362561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Speed of exposure to rapid cold hardening and genotype drive the level of acclimation response in Drosophila melanogaster.
    Gerken AR; Eller-Smith OC; Morgan TJ
    J Therm Biol; 2018 Aug; 76():21-28. PubMed ID: 30143293
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three Quantitative Trait Loci Explain More than 60% of Variation for Chill Coma Recovery Time in a Natural Population of
    Königer A; Arif S; Grath S
    G3 (Bethesda); 2019 Nov; 9(11):3715-3725. PubMed ID: 31690597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A mild cold stress that increases resistance to heat lowers FOXO translocation in Drosophila melanogaster.
    Polesello C; Le Bourg E
    Biogerontology; 2017 Oct; 18(5):791-801. PubMed ID: 28677014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.