BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23901849)

  • 61. The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster.
    Jensen D; Overgaard J; Sørensen JG
    J Insect Physiol; 2007 Feb; 53(2):179-86. PubMed ID: 17234205
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Muscle membrane potential and insect chill coma.
    Andersen JL; MacMillan HA; Overgaard J
    J Exp Biol; 2015 Aug; 218(Pt 16):2492-5. PubMed ID: 26089529
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects.
    Andersen MK; Overgaard J
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Jul; 233():10-16. PubMed ID: 30910613
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease.
    Lee S; Bang SM; Hong YK; Lee JH; Jeong H; Park SH; Liu QF; Lee IS; Cho KS
    Dis Model Mech; 2016 Mar; 9(3):295-306. PubMed ID: 26659252
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Role of HSF activation for resistance to heat, cold and high-temperature knock-down.
    Nielsen MM; Overgaard J; Sørensen JG; Holmstrup M; Justesen J; Loeschcke V
    J Insect Physiol; 2005 Dec; 51(12):1320-9. PubMed ID: 16169555
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses.
    MacMillan HA; Guglielmo CG; Sinclair BJ
    J Insect Physiol; 2009 Mar; 55(3):243-9. PubMed ID: 19111745
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi.
    Vigoder FM; Parker DJ; Cook N; Tournière O; Sneddon T; Ritchie MG
    PLoS One; 2016; 11(11):e0165724. PubMed ID: 27832122
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions.
    Vesala L; Salminen TS; Laiho A; Hoikkala A; Kankare M
    Insect Mol Biol; 2012 Feb; 21(1):107-18. PubMed ID: 22122733
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly.
    Teets NM; Peyton JT; Ragland GJ; Colinet H; Renault D; Hahn DA; Denlinger DL
    Physiol Genomics; 2012 Aug; 44(15):764-77. PubMed ID: 22735925
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions.
    MacMillan HA; Andersen JL; Loeschcke V; Overgaard J
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(10):R823-31. PubMed ID: 25761700
    [TBL] [Abstract][Full Text] [Related]  

  • 71. RNA interference of mRNA processing factors in Drosophila S2 cells.
    Celotto AM; Graveley BR
    Methods Mol Biol; 2004; 257():245-54. PubMed ID: 14770010
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A rapid return to normal: temporal gene expression patterns following cold exposure in the bumble bee Bombus impatiens.
    Verble KM; Keaveny EC; Rahman SR; Jenny MJ; Dillon ME; Lozier JD
    J Exp Biol; 2024 May; 227(9):. PubMed ID: 38629177
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.
    Olsson T; MacMillan HA; Nyberg N; Staerk D; Malmendal A; Overgaard J
    J Exp Biol; 2016 Aug; 219(Pt 16):2504-13. PubMed ID: 27307488
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Changes in lipid classes of Drosophila melanogaster in response to selection for three stress traits.
    Ko L; Harshman L; Hangartner S; Hoffmann A; Kachman S; Black P
    J Insect Physiol; 2019; 117():103890. PubMed ID: 31153895
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Insect capa neuropeptides impact desiccation and cold tolerance.
    Terhzaz S; Teets NM; Cabrero P; Henderson L; Ritchie MG; Nachman RJ; Dow JA; Denlinger DL; Davies SA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2882-7. PubMed ID: 25730885
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pushing the limit: examining factors that affect anoxia tolerance in a single genotype of adult D. melanogaster.
    Benasayag-Meszaros R; Risley MG; Hernandez P; Fendrich M; Dawson-Scully K
    Sci Rep; 2015 Mar; 5():9204. PubMed ID: 25777190
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille.
    Poikela N; Tyukmaeva V; Hoikkala A; Kankare M
    BMC Ecol Evol; 2021 Jun; 21(1):117. PubMed ID: 34112109
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mortality from desiccation contributes to a genotype-temperature interaction for cold survival in Drosophila melanogaster.
    Kobey RL; Montooth KL
    J Exp Biol; 2013 Apr; 216(Pt 7):1174-82. PubMed ID: 23197100
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rapid cold hardening and octopamine modulate chill tolerance in Locusta migratoria.
    Srithiphaphirom P; Lavallee S; Robertson RM
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():28-35. PubMed ID: 30991118
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae).
    Coleman PC; Bale JS; Hayward SA
    PLoS One; 2015; 10(7):e0131301. PubMed ID: 26196923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.