BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23901964)

  • 1. Vibrational solvatochromism: towards systematic approach to modeling solvation phenomena.
    Błasiak B; Lee H; Cho M
    J Chem Phys; 2013 Jul; 139(4):044111. PubMed ID: 23901964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.
    Lee H; Lee G; Jeon J; Cho M
    J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational solvatochromism and electrochromism. II. Multipole analysis.
    Lee H; Choi JH; Cho M
    J Chem Phys; 2012 Sep; 137(11):114307. PubMed ID: 22998262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational solvatochromism and electrochromism: coarse-grained models and their relationships.
    Cho M
    J Chem Phys; 2009 Mar; 130(9):094505. PubMed ID: 19275407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems.
    Błasiak B; Londergan CH; Webb LJ; Cho M
    Acc Chem Res; 2017 Apr; 50(4):968-976. PubMed ID: 28345879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments.
    Cai K; Su T; Lin S; Zheng R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():548-56. PubMed ID: 24036186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational solvatochromism and electrochromism of cyanide, thiocyanate, and azide anions in water.
    Lee H; Choi JH; Cho M
    Phys Chem Chem Phys; 2010 Oct; 12(39):12658-69. PubMed ID: 20830379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational solvatochromism. II. A first-principle theory of solvation-induced vibrational frequency shift based on effective fragment potential method.
    Błasiak B; Cho M
    J Chem Phys; 2014 Apr; 140(16):164107. PubMed ID: 24784253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azido-derivatized compounds as IR probes of local electrostatic environment: Theoretical studies.
    Choi JH; Oh KI; Cho M
    J Chem Phys; 2008 Nov; 129(17):174512. PubMed ID: 19045363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational solvatochromism and electrochromism of infrared probe molecules containing C≡O, C≡N, C=O, or C-F vibrational chromophore.
    Choi JH; Cho M
    J Chem Phys; 2011 Apr; 134(15):154513. PubMed ID: 21513401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of the temperature dependence of amide I vibration.
    Kaminský J; Bouř P; Kubelka J
    J Phys Chem A; 2011 Jan; 115(1):30-4. PubMed ID: 21141980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polarizable force field for computing the infrared spectra of the polypeptide backbone.
    Schultheis V; Reichold R; Schropp B; Tavan P
    J Phys Chem B; 2008 Oct; 112(39):12217-30. PubMed ID: 18781720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and DFT studies on the vibrational and electronic spectra of 9-anthracenemethanol.
    Kou S; Zhou H; Tang G; Li R; Zhang Y; Zhao J; Wei C
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():768-75. PubMed ID: 22885894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water.
    Kubelka J; Huang R; Keiderling TA
    J Phys Chem B; 2005 Apr; 109(16):8231-43. PubMed ID: 16851962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsolvation of methyl hydrogen peroxide: ab initio quantum chemical approach.
    Kulkarni AD; Rai D; Bartolotti LJ; Pathak RK
    J Chem Phys; 2009 Aug; 131(5):054310. PubMed ID: 19673565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic (FT-IR/FT-Raman) and computational (HF/DFT) investigation and HOMO/LUMO/MEP analysis on 2-amino-4-chlorophenol.
    Ramalingam S; Periandy S; Karabacak M; Karthikeyan N
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():337-51. PubMed ID: 23274261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides.
    Cai K; Han C; Wang J
    Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The anharmonic vibrational potential and relaxation pathways of the amide I and II modes of N-methylacetamide.
    DeFlores LP; Ganim Z; Ackley SF; Chung HS; Tokmakoff A
    J Phys Chem B; 2006 Sep; 110(38):18973-80. PubMed ID: 16986892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational solvatochromism. III. Rigorous treatment of the dispersion interaction contribution.
    Błasiak B; Cho M
    J Chem Phys; 2015 Oct; 143(16):164111. PubMed ID: 26520502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectroscopy investigation using ab initio and DFT vibrational analysis of 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine-4-oxide.
    Prasath M; Muthu S; Arun Balaji R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():224-35. PubMed ID: 23732619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.