These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 23901988)
1. Path integral Monte Carlo study of quantum-hard sphere solids. Sesé LM J Chem Phys; 2013 Jul; 139(4):044502. PubMed ID: 23901988 [TBL] [Abstract][Full Text] [Related]
2. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. I. Thermodynamic results. Sesé LM J Chem Phys; 2007 Apr; 126(16):164508. PubMed ID: 17477615 [TBL] [Abstract][Full Text] [Related]
3. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. II. Structural features. Sesé LM; Bailey LE J Chem Phys; 2007 Apr; 126(16):164509. PubMed ID: 17477616 [TBL] [Abstract][Full Text] [Related]
4. Computation of the equation of state of the quantum hard-sphere fluid utilizing several path-integral strategies. Sesé LM J Chem Phys; 2004 Aug; 121(8):3702-9. PubMed ID: 15303936 [TBL] [Abstract][Full Text] [Related]
5. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids. Warshavsky VB; Ford DM; Monson PA J Chem Phys; 2018 Jan; 148(2):024502. PubMed ID: 29331120 [TBL] [Abstract][Full Text] [Related]
6. Real Space Triplets in Quantum Condensed Matter: Numerical Experiments Using Path Integrals, Closures, and Hard Spheres. Sesé LM Entropy (Basel); 2020 Nov; 22(12):. PubMed ID: 33266522 [TBL] [Abstract][Full Text] [Related]
7. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30. Adidharma H; Tan SP J Chem Phys; 2016 Jul; 145(1):014503. PubMed ID: 27394113 [TBL] [Abstract][Full Text] [Related]
8. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals. Wang F; Han Y J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of various lattices from hard ball to soft ball: theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation. Li Y; Lin ST; Goddard WA J Am Chem Soc; 2004 Feb; 126(6):1872-85. PubMed ID: 14871120 [TBL] [Abstract][Full Text] [Related]
11. A study of the pair and triplet structures of the quantum hard-sphere Yukawa fluid. Sesé LM J Chem Phys; 2009 Feb; 130(7):074504. PubMed ID: 19239299 [TBL] [Abstract][Full Text] [Related]
12. The decay of pair correlations in quantum hard-sphere fluids. Bailey LE; Sesé LM J Chem Phys; 2004 Nov; 121(20):10076-87. PubMed ID: 15549882 [TBL] [Abstract][Full Text] [Related]
13. Properties of non-fcc hard-sphere solids predicted by density functional theory. Lutsko JF Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021121. PubMed ID: 17025407 [TBL] [Abstract][Full Text] [Related]
14. Geometry explains the large difference in the elastic properties of fcc and hcp crystals of hard spheres. Sushko N; van der Schoot P Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):067104. PubMed ID: 16486100 [TBL] [Abstract][Full Text] [Related]
16. System-size dependence of the free energy of crystalline solids. de Miguel E; Marguta RG; del Río EM J Chem Phys; 2007 Oct; 127(15):154512. PubMed ID: 17949178 [TBL] [Abstract][Full Text] [Related]
17. Solid-solid transformations in a confined soft sphere fluid. Ghatak C; Ayappa KG Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051507. PubMed ID: 11735929 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression. Wang BT; Shao JL; Zhang GC; Li WD; Zhang P J Phys Condens Matter; 2009 Dec; 21(49):495702. PubMed ID: 21836202 [TBL] [Abstract][Full Text] [Related]
19. Revisiting the phase diagram of hard ellipsoids. Odriozola G J Chem Phys; 2012 Apr; 136(13):134505. PubMed ID: 22482570 [TBL] [Abstract][Full Text] [Related]
20. Complete basis set limit second-order Møller-Plesset calculations for the fcc lattices of neon, argon, krypton, and xenon. Hermann A; Schwerdtfeger P J Chem Phys; 2009 Dec; 131(24):244508. PubMed ID: 20059080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]