BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23901991)

  • 21. Vibrational relaxation of azide ions in liquid-to-supercritical water.
    Olschewski M; Knop S; Lindner J; Vöhringer P
    J Chem Phys; 2011 Jun; 134(21):214504. PubMed ID: 21663364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water in Contact with a Cationic Lipid Exhibits Bulklike Vibrational Dynamics.
    Livingstone RA; Zhang Z; Piatkowski L; Bakker HJ; Hunger J; Bonn M; Backus EHG
    J Phys Chem B; 2016 Sep; 120(38):10069-10078. PubMed ID: 27564997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrafast memory loss and relaxation processes in hydrogen-bonded systems.
    Elsaesser T
    Biol Chem; 2009 Nov; 390(11):1125-32. PubMed ID: 19663683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast Energy Redistribution in Local Hydration Shells of Phospholipids: A Two-Dimensional Infrared Study.
    Costard R; Greve C; Heisler IA; Elsaesser T
    J Phys Chem Lett; 2012 Dec; 3(23):3646-51. PubMed ID: 26291000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump-probe spectroscopy.
    Bonn M; Bakker HJ; Ghosh A; Yamamoto S; Sovago M; Campen RK
    J Am Chem Soc; 2010 Oct; 132(42):14971-8. PubMed ID: 20882964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vibrational Energy Relaxation of Thiocyanate Ions in Liquid-to-Supercritical Light and Heavy Water. A Fermi's Golden Rule Analysis.
    Czurlok D; Gleim J; Lindner J; Vöhringer P
    J Phys Chem Lett; 2014 Oct; 5(19):3373-9. PubMed ID: 26278447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.
    Park S; Odelius M; Gaffney KJ
    J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibrational energy relaxation of the OH(D) stretch fundamental of methanol in carbon tetrachloride.
    Gulmen TS; Sibert EL
    J Chem Phys; 2005 Nov; 123(20):204508. PubMed ID: 16351282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vibrational relaxation in simulated two-dimensional infrared spectra of two amide modes in solution.
    Dijkstra AG; Jansen Tl; Bloem R; Knoester J
    J Chem Phys; 2007 Nov; 127(19):194505. PubMed ID: 18035890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonant vibrational energy transfer in ice Ih.
    Shi L; Li F; Skinner JL
    J Chem Phys; 2014 Jun; 140(24):244503. PubMed ID: 24985650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relaxation-assisted two-dimensional infrared (RA 2DIR) method: accessing distances over 10 A and measuring bond connectivity patterns.
    Rubtsov IV
    Acc Chem Res; 2009 Sep; 42(9):1385-94. PubMed ID: 19462972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water structure, dynamics, and vibrational spectroscopy in sodium bromide solutions.
    Lin YS; Auer BM; Skinner JL
    J Chem Phys; 2009 Oct; 131(14):144511. PubMed ID: 19831456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion association in aqueous solutions probed through vibrational energy transfers among cation, anion, and water molecules.
    Li J; Bian H; Chen H; Wen X; Hoang BT; Zheng J
    J Phys Chem B; 2013 Apr; 117(16):4274-83. PubMed ID: 22928938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of vibrational energy transfer in two-dimensional infrared spectroscopy of amide I and amide II modes in solution.
    Bloem R; Dijkstra AG; Jansen Tl; Knoester J
    J Chem Phys; 2008 Aug; 129(5):055101. PubMed ID: 18698926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-resolved infrared absorption studies of the solvent-dependent vibrational relaxation dynamics of chlorine dioxide.
    Bolinger JC; Bixby TJ; Reid PJ
    J Chem Phys; 2005 Aug; 123(8):084503. PubMed ID: 16164308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibrational energy transfer and anisotropy decay in liquid water: is the Förster model valid?
    Yang M; Li F; Skinner JL
    J Chem Phys; 2011 Oct; 135(16):164505. PubMed ID: 22047250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time resolved infrared absorption studies of geminate recombination and vibrational relaxation in OClO photochemistry.
    Bolinger JC; Hayes SC; Reid PJ
    J Chem Phys; 2004 Sep; 121(10):4795-803. PubMed ID: 15332913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water.
    Ishiyama T
    J Chem Phys; 2021 May; 154(20):204502. PubMed ID: 34241149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mobility mechanism of hydroxyl radicals in aqueous solution via hydrogen transfer.
    Codorniu-Hernández E; Kusalik PG
    J Am Chem Soc; 2012 Jan; 134(1):532-8. PubMed ID: 22107057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant charge effects on the location, vibrational spectra, and relaxation dynamics of cyanoferrates in reverse micelles.
    Sando GM; Dahl K; Owrutsky JC
    J Phys Chem B; 2005 Mar; 109(9):4084-95. PubMed ID: 16851467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.