These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 23902017)
1. Modified scaling principle for rotational relaxation in a model for suspensions of rigid rods. Tse YL; Andersen HC J Chem Phys; 2013 Jul; 139(4):044905. PubMed ID: 23902017 [TBL] [Abstract][Full Text] [Related]
2. A lattice model of the translational dynamics of nonrotating rigid rods. Tse YL; Andersen HC J Chem Phys; 2012 Jan; 136(2):024904. PubMed ID: 22260613 [TBL] [Abstract][Full Text] [Related]
3. Simulations of concentrated suspensions of rigid fibers: relationship between short-time diffusivities and the long-time rotational diffusion. Cobb PD; Butler JE J Chem Phys; 2005 Aug; 123(5):054908. PubMed ID: 16108694 [TBL] [Abstract][Full Text] [Related]
4. Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods. Tao YG; den Otter WK; Padding JT; Dhont JK; Briels WJ J Chem Phys; 2005 Jun; 122(24):244903. PubMed ID: 16035812 [TBL] [Abstract][Full Text] [Related]
5. Microscopic theory of topologically entangled fluids of rigid macromolecules. Sussman DM; Schweizer KS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061501. PubMed ID: 21797366 [TBL] [Abstract][Full Text] [Related]
6. Critical behavior of self-assembled rigid rods on two-dimensional lattices: Bethe-Peierls approximation and Monte Carlo simulations. López LG; Linares DH; Ramirez-Pastor AJ; Stariolo DA; Cannas SA J Chem Phys; 2013 Jun; 138(23):234706. PubMed ID: 23802975 [TBL] [Abstract][Full Text] [Related]
7. Concentration and saturation effects of tethered polymer chains on adsorbing surfaces. Descas R; Sommer JU; Blumen A J Chem Phys; 2006 Dec; 125(21):214702. PubMed ID: 17166035 [TBL] [Abstract][Full Text] [Related]
8. On the density scaling of pVT data and transport properties for molecular and ionic liquids. López ER; Pensado AS; Fernández J; Harris KR J Chem Phys; 2012 Jun; 136(21):214502. PubMed ID: 22697553 [TBL] [Abstract][Full Text] [Related]
9. Persistence length and bending dynamics of DNA from electrooptical measurements at high salt concentrations. Porschke D Biophys Chem; 1991 May; 40(2):169-79. PubMed ID: 1653052 [TBL] [Abstract][Full Text] [Related]
10. The viscosity of short polyelectrolyte solutions. Izzo D; Cloitre M; Leibler L Soft Matter; 2014 Mar; 10(11):1714-22. PubMed ID: 24652236 [TBL] [Abstract][Full Text] [Related]
11. Simulation of semidilute suspensions of non-Brownian fibers in shear flow. Lindström SB; Uesaka T J Chem Phys; 2008 Jan; 128(2):024901. PubMed ID: 18205469 [TBL] [Abstract][Full Text] [Related]
12. Monolayers of hard rods on planar substrates. II. Growth. Klopotek M; Hansen-Goos H; Dixit M; Schilling T; Schreiber F; Oettel M J Chem Phys; 2017 Feb; 146(8):084903. PubMed ID: 28249435 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo simulations of stress relaxation of entanglement-free Fraenkel chains. II. Nonlinear polymer viscoelasticity. Lin YH; Das AK J Chem Phys; 2007 Feb; 126(7):074903. PubMed ID: 17328630 [TBL] [Abstract][Full Text] [Related]
14. Translational and rotational diffusion of rod shaped molecules by molecular dynamics simulations. Heyes DM J Chem Phys; 2019 May; 150(18):184503. PubMed ID: 31091888 [TBL] [Abstract][Full Text] [Related]
15. Diffusion of spheres in crowded suspensions of rods. Kang K; Gapinski J; Lettinga MP; Buitenhuis J; Meier G; Ratajczyk M; Dhont JK; Patkowski A J Chem Phys; 2005 Jan; 122(4):44905. PubMed ID: 15740296 [TBL] [Abstract][Full Text] [Related]
16. Application of Heisenberg's S matrix program to the angular scattering of the H + D2(v(i) = 0, j(i) = 0) → HD(v(f) = 3, j(f) = 0) + D reaction: piecewise S matrix elements using linear, quadratic, step-function, and top-hat parametrizations. Shan X; Connor JN J Phys Chem A; 2012 Nov; 116(46):11414-26. PubMed ID: 22876759 [TBL] [Abstract][Full Text] [Related]
17. Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model. Xun Z; Tang G; Han K; Xia H; Hao D; Li Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041126. PubMed ID: 22680438 [TBL] [Abstract][Full Text] [Related]
18. Self-diffusion in two-dimensional hard ellipsoid suspensions. Zheng Z; Han Y J Chem Phys; 2010 Sep; 133(12):124509. PubMed ID: 20886952 [TBL] [Abstract][Full Text] [Related]
19. Entropic forces and directed alignment of hard squares in suspensions of rods and disks. Triplett DA; Fichthorn KA J Chem Phys; 2010 Oct; 133(14):144910. PubMed ID: 20950044 [TBL] [Abstract][Full Text] [Related]
20. Analytical phase diagrams for colloids and non-adsorbing polymer. Fleer GJ; Tuinier R Adv Colloid Interface Sci; 2008 Nov; 143(1-2):1-47. PubMed ID: 18783771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]