These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 23902102)
1. System to measure accurate temperature dependence of electric conductivity down to 20 K in ultrahigh vacuum. Sakai C; Takeda SN; Daimon H Rev Sci Instrum; 2013 Jul; 84(7):075103. PubMed ID: 23902102 [TBL] [Abstract][Full Text] [Related]
2. Versatile system for the temperature-controlled preparation of oxide crystal surfaces. Pieper HH; Lammers C; Tröger L; Bahr S; Reichling M Rev Sci Instrum; 2012 May; 83(5):055110. PubMed ID: 22667660 [TBL] [Abstract][Full Text] [Related]
3. Development of a surface conductivity measurement system for ultrahigh vacuum transmission electron microscope. Minoda H; Hatano K; Yazawa H Rev Sci Instrum; 2009 Nov; 80(11):113702. PubMed ID: 19947732 [TBL] [Abstract][Full Text] [Related]
4. A low-temperature high resolution scanning tunneling microscope with a three-dimensional magnetic vector field operating in ultrahigh vacuum. Mashoff T; Pratzer M; Morgenstern M Rev Sci Instrum; 2009 May; 80(5):053702. PubMed ID: 19485511 [TBL] [Abstract][Full Text] [Related]
5. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system. Rutkowski MM; McNicholas KM; Zeng Z; Brillson LJ Rev Sci Instrum; 2013 Jun; 84(6):065105. PubMed ID: 23822376 [TBL] [Abstract][Full Text] [Related]
6. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability. Zhang L; Miyamachi T; Tomanić T; Dehm R; Wulfhekel W Rev Sci Instrum; 2011 Oct; 82(10):103702. PubMed ID: 22047298 [TBL] [Abstract][Full Text] [Related]
8. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions. Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370 [TBL] [Abstract][Full Text] [Related]
9. An ultrahigh vacuum compatible sample holder for studying complex metal surfaces. Dhaka RS; Shukla AK; Maniraj M; D'Souza SW; Nayak J; Barman SR Rev Sci Instrum; 2010 Apr; 81(4):043907. PubMed ID: 20441350 [TBL] [Abstract][Full Text] [Related]
10. Laser flash method for measuring thermal conductivity of liquids-application to low thermal conductivity liquids. Tada Y; Harada M; Tanigaki M; Eguchi W Rev Sci Instrum; 1978 Sep; 49(9):1305. PubMed ID: 18699307 [TBL] [Abstract][Full Text] [Related]
11. High temperature Z-meter setup for characterizing thermoelectric material under large temperature gradient. Amatya R; Mayer PM; Ram RJ Rev Sci Instrum; 2012 Jul; 83(7):075117. PubMed ID: 22852734 [TBL] [Abstract][Full Text] [Related]
12. A Newly Designed Infrared Reflection Absorption Spectroscopy System for In Situ Characterization from Ultrahigh Vacuum to Ambient Pressure. Du Y; Li L; Wang X; Qiu H Appl Spectrosc; 2018 Jan; 72(1):122-128. PubMed ID: 29069912 [TBL] [Abstract][Full Text] [Related]
13. A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions. Morfin F; Piccolo L Rev Sci Instrum; 2013 Sep; 84(9):094101. PubMed ID: 24089839 [TBL] [Abstract][Full Text] [Related]
14. Calorimetric method of ac loss measurement in a rotating magnetic field. Ghoshal PK; Coombs TA; Campbell AM Rev Sci Instrum; 2010 Jul; 81(7):074702. PubMed ID: 20687748 [TBL] [Abstract][Full Text] [Related]
15. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging. Diaconescu B; Nenchev G; de la Figuera J; Pohl K Rev Sci Instrum; 2007 Oct; 78(10):103701. PubMed ID: 17979422 [TBL] [Abstract][Full Text] [Related]
16. Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature. Kitano H; Ohashi T; Maeda A Rev Sci Instrum; 2008 Jul; 79(7):074701. PubMed ID: 18681723 [TBL] [Abstract][Full Text] [Related]
17. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes. Weiss T; Nowak M; Mundloch U; Zielasek V; Kohse-Höinghaus K; Bäumer M Rev Sci Instrum; 2014 Oct; 85(10):104104. PubMed ID: 25362422 [TBL] [Abstract][Full Text] [Related]
18. Ultrahigh vacuum-compatible fabrication and electrical characterization systems for environmentally sensitive metal oxide semiconductor capacitors. Billman CA; Walker FJ Rev Sci Instrum; 2007 Jun; 78(6):065113. PubMed ID: 17614644 [TBL] [Abstract][Full Text] [Related]
19. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope. Hanzelka P; Vonka J; Musilova V Rev Sci Instrum; 2013 Aug; 84(8):085103. PubMed ID: 24007103 [TBL] [Abstract][Full Text] [Related]
20. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields. Ma H; Liu H; Liu F; Zhang H; Ci L; Shi Y; Lei L Rev Sci Instrum; 2018 Jan; 89(1):015102. PubMed ID: 29390670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]