These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23902109)

  • 1. Development of a precision nanoindentation platform.
    Nowakowski BK; Smith DT; Smith ST; Correa LF; Cook RF
    Rev Sci Instrum; 2013 Jul; 84(7):075110. PubMed ID: 23902109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone.
    Paietta RC; Campbell SE; Ferguson VL
    J Biomech; 2011 Jan; 44(2):285-90. PubMed ID: 21092970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Behavior of Undoped n-Type GaAs under the Indentation of Berkovich and Flat-Tip Indenters.
    Xu L; Kong L; Zhao H; Wang S; Liu S; Qian L
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30979061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of friction on indenter force and pile-up in numerical simulations of bone nanoindentation.
    Adam CJ; Swain MV
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1554-8. PubMed ID: 21783165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration issues for nanoindentation experiments: direct atomic force microscopy measurements and indirect methods.
    Barone AC; Salerno M; Patra N; Gastaldi D; Bertarelli E; Carnelli D; Vena P
    Microsc Res Tech; 2010 Oct; 73(10):996-1004. PubMed ID: 20306539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to quantitatively measure the elastic modulus of materials in nanometer scale using atomic force microscopy.
    Tang B; Ngan AH; Pethica JB
    Nanotechnology; 2008 Dec; 19(49):495713. PubMed ID: 21730693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFM Nanoindentation To Quantify Mechanical Properties of Nano- and Micron-Sized Crystals of a Metal-Organic Framework Material.
    Zeng Z; Tan JC
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39839-39854. PubMed ID: 29064663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques.
    Ni H; Li X
    Nanotechnology; 2006 Jul; 17(14):3591-7. PubMed ID: 19661610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SI traceable calibration of an instrumented indentation sensor spring constant using electrostatic force.
    Chung KH; Scholz S; Shaw GA; Kramar JA; Pratt JR
    Rev Sci Instrum; 2008 Sep; 79(9):095105. PubMed ID: 19044452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An international round-robin calibration protocol for nanoindentation measurements.
    Cabibbo M; Ricci P; Cecchini R; Rymuza Z; Sullivan J; Dub S; Cohen S
    Micron; 2012 Feb; 43(2-3):215-22. PubMed ID: 21890366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope.
    Wheeler JM; Michler J
    Rev Sci Instrum; 2013 Apr; 84(4):045103. PubMed ID: 23635228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface roughness in the determination of the mechanical properties of material using nanoindentation test.
    Xia Y; Bigerelle M; Marteau J; Mazeran PE; Bouvier S; Iost A
    Scanning; 2014; 36(1):134-49. PubMed ID: 23835928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On elastic nanoindentation of coated half-spaces by point indenters of non-ideal shapes.
    Kindrachuk VM; Galanov BA; Kartuzov VV; Dub SN
    Nanotechnology; 2006 Feb; 17(4):1104-11. PubMed ID: 21727388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ microviscoelastic measurements by polarization-interferometric monitoring of indentation depth.
    Williams VS; Landesman AL; Shack RV; Vukobratovich D; Bhushan B
    Appl Opt; 1988 Feb; 27(3):541-6. PubMed ID: 20523637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements.
    Zhang Y; Oh Y; Stauffer D; Polycarpou AA
    Rev Sci Instrum; 2018 Apr; 89(4):045109. PubMed ID: 29716381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy absorption characterization of human enamel using nanoindentation.
    He LH; Swain MV
    J Biomed Mater Res A; 2007 May; 81(2):484-92. PubMed ID: 17133444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The elastic moduli of oriented tin oxide nanowires.
    Barth S; Harnagea C; Mathur S; Rosei F
    Nanotechnology; 2009 Mar; 20(11):115705. PubMed ID: 19420453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoindentation creep behavior of human enamel.
    He LH; Swain MV
    J Biomed Mater Res A; 2009 Nov; 91(2):352-9. PubMed ID: 18980191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanics of biocompatible TiO(2) nanotubes by Interfacial Force Microscopy (IFM).
    Crawford GA; Chawla N; Houston JE
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):580-7. PubMed ID: 19716101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study.
    Passeri D; Bettucci A; Biagioni A; Rossi M; Alippi A; Tamburri E; Lucci M; Davoli I; Berezina S
    Ultramicroscopy; 2009 Nov; 109(12):1417-27. PubMed ID: 19674843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.