These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23902285)

  • 1. Visualization of peroxynitrite-induced changes of labile Zn2+ in the endoplasmic reticulum with benzoresorufin-based fluorescent probes.
    Lin W; Buccella D; Lippard SJ
    J Am Chem Soc; 2013 Sep; 135(36):13512-20. PubMed ID: 23902285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organelle-Level Labile Zn
    Liu R; Kowada T; Du Y; Amagai Y; Matsui T; Inaba K; Mizukami S
    ACS Sens; 2022 Mar; 7(3):748-757. PubMed ID: 35238552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of a second binding site increases the dynamic range but alters the cellular localization of a red fluorescent probe for mobile zinc.
    Loas A; Radford RJ; Lippard SJ
    Inorg Chem; 2014 Jul; 53(13):6491-3. PubMed ID: 24915285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 6-methylpyridyl for pyridyl substitution tunes the properties of fluorescent zinc sensors of the Zinpyr family.
    Goldsmith CR; Lippard SJ
    Inorg Chem; 2006 Jan; 45(2):555-61. PubMed ID: 16411690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromis-1, a Ratiometric Fluorescent Probe Optimized for Two-Photon Microscopy Reveals Dynamic Changes in Labile Zn(II) in Differentiating Oligodendrocytes.
    Bourassa D; Elitt CM; McCallum AM; Sumalekshmy S; McRae RL; Morgan MT; Siegel N; Perry JW; Rosenberg PA; Fahrni CJ
    ACS Sens; 2018 Feb; 3(2):458-467. PubMed ID: 29431427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organelle-selective fluorescent Cu2+ ion probes: revealing the endoplasmic reticulum as a reservoir for Cu-overloading.
    Lee YH; Park N; Park YB; Hwang YJ; Kang C; Kim JS
    Chem Commun (Camb); 2014 Mar; 50(24):3197-200. PubMed ID: 24519529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HaloTag-Based Hybrid Targetable and Ratiometric Sensors for Intracellular Zinc.
    Zastrow ML; Huang Z; Lippard SJ
    ACS Chem Biol; 2020 Feb; 15(2):396-406. PubMed ID: 31917534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for synthesis and use of a turn-on fluorescent probe for quantifying labile Zn
    Kowada T; Watanabe T; Liu R; Mizukami S
    STAR Protoc; 2021 Jun; 2(2):100395. PubMed ID: 33796872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring cytosolic and ER Zn(2+) in stimulated breast cancer cells using genetically encoded FRET sensors.
    Hessels AM; Taylor KM; Merkx M
    Metallomics; 2016 Feb; 8(2):211-7. PubMed ID: 26739447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Anthryltriazolyl-containing multidentate ligands: zinc-coordination mediated photophysical processes and potential in live-cell imaging applications.
    Michaels HA; Murphy CS; Clark RJ; Davidson MW; Zhu L
    Inorg Chem; 2010 May; 49(9):4278-87. PubMed ID: 20369825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The zinspy family of fluorescent zinc sensors: syntheses and spectroscopic investigations.
    Nolan EM; Lippard SJ
    Inorg Chem; 2004 Dec; 43(26):8310-7. PubMed ID: 15606177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A heteroditopic fluoroionophoric platform for constructing fluorescent probes with large dynamic ranges for zinc ions.
    Zhang L; Clark RJ; Zhu L
    Chemistry; 2008; 14(9):2894-903. PubMed ID: 18232042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors.
    Wong BA; Friedle S; Lippard SJ
    J Am Chem Soc; 2009 May; 131(20):7142-52. PubMed ID: 19405465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new fluorescent probe for zinc(II): an 8-hydroxy-5-N,N-dimethylaminosulfonylquinoline-pendant 1,4,7,10-tetraazacyclododecane.
    Aoki S; Sakurama K; Matsuo N; Yamada Y; Takasawa R; Tanuma S; Shiro M; Takeda K; Kimura E
    Chemistry; 2006 Dec; 12(35):9066-80. PubMed ID: 16953498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors.
    Qin Y; Dittmer PJ; Park JG; Jansen KB; Palmer AE
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7351-6. PubMed ID: 21502528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Imaging of Labile Zn
    Kowada T; Watanabe T; Amagai Y; Liu R; Yamada M; Takahashi H; Matsui T; Inaba K; Mizukami S
    Cell Chem Biol; 2020 Dec; 27(12):1521-1531.e8. PubMed ID: 32997976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel zinc bis(thiosemicarbazone) complex for live cell imaging.
    Dayal D; Palanimuthu D; Shinde SV; Somasundaram K; Samuelson AG
    J Biol Inorg Chem; 2011 Apr; 16(4):621-32. PubMed ID: 21384247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc.
    Chang CJ; Nolan EM; Jaworski J; Burdette SC; Sheng M; Lippard SJ
    Chem Biol; 2004 Feb; 11(2):203-10. PubMed ID: 15123282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subtle modification of 2,2-dipicolylamine lowers the affinity and improves the turn-on of Zn(II)-selective fluorescent sensors.
    Wong BA; Friedle S; Lippard SJ
    Inorg Chem; 2009 Aug; 48(15):7009-11. PubMed ID: 19572729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc.
    Komatsu K; Urano Y; Kojima H; Nagano T
    J Am Chem Soc; 2007 Nov; 129(44):13447-54. PubMed ID: 17927174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.