These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23903100)

  • 1. Axicon lens-based cone shell configuration for depth-sensitive fluorescence measurements in turbid media.
    Ong YH; Liu Q
    Opt Lett; 2013 Aug; 38(15):2647-9. PubMed ID: 23903100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration.
    Ong YH; Liu Q
    J Biomed Opt; 2013 Nov; 18(11):110503. PubMed ID: 24247742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifocal noncontact color imaging for depth-sensitive fluorescence measurements of epithelial cancer.
    Zhu C; Ong YH; Liu Q
    Opt Lett; 2014 Jun; 39(11):3250-3. PubMed ID: 24876025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of lens based setup for depth sensitive diffuse reflectance measurements in an epithelial cancer model.
    Zhu C; Liu Q
    Opt Express; 2012 Dec; 20(28):29807-22. PubMed ID: 23388808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue.
    Khan KM; Majumder SK; Gupta PK
    J Biophotonics; 2015 Nov; 8(11-12):889-96. PubMed ID: 26248877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres.
    Wenger J; Gérard D; Aouani H; Rigneault H
    Anal Chem; 2008 Sep; 80(17):6800-4. PubMed ID: 18681458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microlensed dual-fiber probe for depth-resolved fluorescence measurements.
    Choi HY; Ryu SY; Kim JY; Kim GH; Park SJ; Lee BH; Chang KS
    Opt Express; 2011 Jul; 19(15):14172-81. PubMed ID: 21934780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CCD-based projectional imaging of fluorescent probes in tissue-like media: experimental setup and characterization.
    Pöschinger T; Janunts E; Brünner H; Langenbucher A
    Z Med Phys; 2010; 20(4):299-308. PubMed ID: 21134631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement.
    Estupiñán-López C; Tolentino Dominguez C; de Araujo RE
    Opt Express; 2013 Jul; 21(15):18592-601. PubMed ID: 23938731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonmechanical zoom system through pressure-controlled tunable fluidic lenses.
    Savidis N; Peyman G; Peyghambarian N; Schwiegerling J
    Appl Opt; 2013 Apr; 52(12):2858-65. PubMed ID: 23669698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon scanned light sheet fluorescence microscopy with axicon imaging for fast volumetric imaging.
    Lin PY; Hwang SL; Lee CH; Chen BC
    J Biomed Opt; 2021 Nov; 26(11):. PubMed ID: 34796706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations.
    Jaillon F; Zheng W; Huang Z
    Phys Med Biol; 2008 Feb; 53(4):937-51. PubMed ID: 18263950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens.
    Serov A; Rao R; Gösch M; Anhut T; Martin D; Brunner R; Rigler R; Lasser T
    Biosens Bioelectron; 2004 Oct; 20(3):431-5. PubMed ID: 15494221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound Axicon: Systematic Approach to Optimize Focusing Resolution through Human Skull Bone.
    Acquaticci F; Lew SE; Gwirc SN
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31635195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundaments of optical far-field subwavelength resolution based on illumination with surface waves.
    Lopez-Boada R; Regan CJ; Dominguez D; Bernussi AA; Grave de Peralta L
    Opt Express; 2013 May; 21(10):11928-42. PubMed ID: 23736415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric HiLo microscopy employing an electrically tunable lens.
    Philipp K; Smolarski A; Koukourakis N; Fischer A; Stürmer M; Wallrabe U; Czarske JW
    Opt Express; 2016 Jun; 24(13):15029-41. PubMed ID: 27410654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating.
    Hu R; Luo X; Zheng H; Qin Z; Gan Z; Wu B; Liu S
    Opt Express; 2012 Jun; 20(13):13727-37. PubMed ID: 22714438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of a liquid lens enabled in vivo optical coherence microscope.
    Murali S; Meemon P; Lee KS; Kuhn WP; Thompson KP; Rolland JP
    Appl Opt; 2010 Jun; 49(16):D145-56. PubMed ID: 20517356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of objective lenses for multiphoton microscopy in turbid samples.
    Singh A; McMullen JD; Doris EA; Zipfel WR
    Biomed Opt Express; 2015 Aug; 6(8):3113-27. PubMed ID: 26309771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.