These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23903119)

  • 41. Cost-effective imaging of optoacoustic pressure, ultrasonic scattering, and optical diffuse reflectance with improved resolution and speed.
    Subochev P
    Opt Lett; 2016 Mar; 41(5):1006-9. PubMed ID: 26974102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Increasing the imaging depth of coherent anti-Stokes Raman scattering microscopy with a miniature microscope objective.
    Wang H; Huff TB; Fu Y; Jia KY; Cheng JX
    Opt Lett; 2007 Aug; 32(15):2212-4. PubMed ID: 17671587
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bessel acoustic-beam acoustic lens for extending the depth of field of detection in optical-resolution photoacoustic microscopy.
    Zeng J; Chen A; Li Z; Song X
    Appl Opt; 2023 Jan; 62(1):255-259. PubMed ID: 36606872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motionless volumetric photoacoustic microscopy with spatially invariant resolution.
    Yang J; Gong L; Xu X; Hai P; Shen Y; Suzuki Y; Wang LV
    Nat Commun; 2017 Oct; 8(1):780. PubMed ID: 28974681
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Grueneisen relaxation photoacoustic microscopy.
    Wang L; Zhang C; Wang LV
    Phys Rev Lett; 2014 Oct; 113(17):174301. PubMed ID: 25379919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning.
    Chen SL; Xie Z; Ling T; Guo LJ; Wei X; Wang X
    Opt Lett; 2012 Oct; 37(20):4263-5. PubMed ID: 23073431
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries.
    Jiang B; Yang X; Luo Q
    Opt Express; 2016 Sep; 24(18):20167-76. PubMed ID: 27607624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo study of endometriosis in mice by photoacoustic microscopy.
    Ding Y; Zhang M; Lang J; Leng J; Ren Q; Yang J; Li C
    J Biophotonics; 2015 Jan; 8(1-2):94-101. PubMed ID: 24519971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy.
    Chemnitz M; Baumgartl M; Meyer T; Jauregui C; Dietzek B; Popp J; Limpert J; Tünnermann A
    Opt Express; 2012 Nov; 20(24):26583-95. PubMed ID: 23187513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fully waterproof two-axis galvanometer scanner for enhanced wide-field optical-resolution photoacoustic microscopy.
    Lee J; Han S; Seong D; Lee J; Park S; Eranga Wijesinghe R; Jeon M; Kim J
    Opt Lett; 2020 Feb; 45(4):865-868. PubMed ID: 32058491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Double-clad hollow core photonic crystal fiber for coherent Raman endoscope.
    Brustlein S; Berto P; Hostein R; Ferrand P; Billaudeau C; Marguet D; Muir A; Knight J; Rigneault H
    Opt Express; 2011 Jun; 19(13):12562-8. PubMed ID: 21716497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cost-efficient laser-diode-induced optical-resolution photoacoustic microscopy for two-dimensional/three-dimensional biomedical imaging.
    Zeng L; Liu G; Yang D; Ji X
    J Biomed Opt; 2014; 19(7):076017. PubMed ID: 25057961
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improvement of depth resolution of ADF-SCEM by deconvolution: effects of electron energy loss and chromatic aberration on depth resolution.
    Zhang X; Takeguchi M; Hashimoto A; Mitsuishi K; Tezuka M; Shimojo M
    Microsc Microanal; 2012 Jun; 18(3):603-11. PubMed ID: 22494464
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-sided residual refocusing for an acoustic lens-based photoacoustic imaging system.
    Francis KJ; Chinni B; Channappayya SS; Pachamuthu R; Dogra VS; Rao N
    Phys Med Biol; 2018 Jul; 63(13):13NT03. PubMed ID: 29846175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photoacoustic microscopy: superdepth, superresolution, and superb contrast.
    Yao J; Song L; Wang LV
    IEEE Pulse; 2015; 6(3):34-7. PubMed ID: 25974913
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Implementation of a Nonlinear Microscope Based on Stimulated Raman Scattering.
    Ranjan R; Indolfi M; Ferrara MA; Sirleto L
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31329172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photoacoustic endomicroscopy based on a MEMS scanning mirror.
    Guo H; Song C; Xie H; Xi L
    Opt Lett; 2017 Nov; 42(22):4615-4618. PubMed ID: 29140326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers.
    Wang Z; Gao L; Luo P; Yang Y; Hammoudi AA; Wong KK; Wong ST
    Opt Express; 2011 Apr; 19(9):7960-70. PubMed ID: 21643045
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Label-free photoacoustic microscopy for in-vivo tendon imaging using a fiber-based pulse laser.
    Lee HD; Shin JG; Hyun H; Yu BA; Eom TJ
    Sci Rep; 2018 Mar; 8(1):4805. PubMed ID: 29556037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line.
    He R; Liu Z; Xu Y; Huang W; Ma H; Ji M
    Opt Lett; 2017 Feb; 42(4):659-662. PubMed ID: 28198892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.