These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23903179)

  • 1. Variable aperture controlled by microelectrofluidic iris.
    Chang JH; Jung KD; Lee E; Choi M; Lee S; Kim W
    Opt Lett; 2013 Aug; 38(15):2919-22. PubMed ID: 23903179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varifocal liquid lens based on microelectrofluidic technology.
    Chang JH; Jung KD; Lee E; Choi M; Lee S; Kim W
    Opt Lett; 2012 Nov; 37(21):4377-9. PubMed ID: 23114301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive liquid iris based on electrowetting.
    Li L; Liu C; Ren H; Wang QH
    Opt Lett; 2013 Jul; 38(13):2336-8. PubMed ID: 23811920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically actuated liquid iris.
    Xu M; Ren H; Lin YH
    Opt Lett; 2015 Mar; 40(5):831-4. PubMed ID: 25723444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical switch based on tunable aperture.
    Li L; Liu C; Wang QH
    Opt Lett; 2012 Aug; 37(16):3306-8. PubMed ID: 23381239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning microchannel wettability and fabrication of multiple-step Laplace valves.
    Takei G; Nonogi M; Hibara A; Kitamori T; Kim HB
    Lab Chip; 2007 May; 7(5):596-602. PubMed ID: 17476378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical switch based on variable aperture.
    Ren H; Xu S; Wu ST
    Opt Lett; 2012 May; 37(9):1421-3. PubMed ID: 22555691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dielectric liquid iris.
    Tsai CG; Yeh JA
    Opt Lett; 2010 Jul; 35(14):2484-6. PubMed ID: 20634871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of anterior chamber angle dynamics using optical coherence tomography.
    Leung CK; Chan WM; Ko CY; Chui SI; Woo J; Tsang MK; Tse RK
    Ophthalmology; 2005 Jun; 112(6):980-4. PubMed ID: 15936438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable optofluidic slit aperture.
    Schuhladen S; Banerjee K; Stürmer M; Müller P; Wallrabe U; Zappe H
    Light Sci Appl; 2016 Jan; 5(1):e16005. PubMed ID: 30167111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer.
    Gu H; Duits MH; Mugele F
    Lab Chip; 2010 Jun; 10(12):1550-6. PubMed ID: 20517557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectromechanical-systems-driven two-layer rotary-blade-based adjustable iris diaphragm.
    Zhou G; Yu H; Du Y; Chau FS
    Opt Lett; 2012 May; 37(10):1745-7. PubMed ID: 22627557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-infrared optical coherence tomography.
    Colley CS; Hebden JC; Delpy DT; Cambrey AD; Brown RA; Zibik EA; Ng WH; Wilson LR; Cockburn JW
    Rev Sci Instrum; 2007 Dec; 78(12):123108. PubMed ID: 18163721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of MEMS devices with optical apertures for the detection of transparent biological cells.
    Zhou X; Poenar DP; Liu KY; Tse MS; Heng CK; Tan SN
    Biomed Microdevices; 2008 Oct; 10(5):639-52. PubMed ID: 18443909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography.
    Wylegała E; Teper S; Nowińska AK; Milka M; Dobrowolski D
    J Cataract Refract Surg; 2009 Aug; 35(8):1410-4. PubMed ID: 19631129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic.
    Hung KY; Fan CC; Tseng FG; Chen YK
    Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics.
    Choi M; Lee S; Chang JH; Lee E; Jung KD; Kim W
    Opt Express; 2013 Jan; 21(2):1567-73. PubMed ID: 23389140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.