These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 23903194)
1. Phosphorylation of RNA polymerase II is independent of P-TEFb in the C. elegans germline. Bowman EA; Bowman CR; Ahn JH; Kelly WG Development; 2013 Sep; 140(17):3703-13. PubMed ID: 23903194 [TBL] [Abstract][Full Text] [Related]
2. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Shim EY; Walker AK; Shi Y; Blackwell TK Genes Dev; 2002 Aug; 16(16):2135-46. PubMed ID: 12183367 [TBL] [Abstract][Full Text] [Related]
3. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Bowman EA; Kelly WG Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308 [TBL] [Abstract][Full Text] [Related]
4. Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells. Hanyu-Nakamura K; Sonobe-Nojima H; Tanigawa A; Lasko P; Nakamura A Nature; 2008 Feb; 451(7179):730-3. PubMed ID: 18200011 [TBL] [Abstract][Full Text] [Related]
5. A maternal factor unique to ascidians silences the germline via binding to P-TEFb and RNAP II regulation. Kumano G; Takatori N; Negishi T; Takada T; Nishida H Curr Biol; 2011 Aug; 21(15):1308-13. PubMed ID: 21782435 [TBL] [Abstract][Full Text] [Related]
6. Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C-terminal domain of eukaryotic RNA polymerase II by P-TEFb. Mayfield JE; Irani S; Escobar EE; Zhang Z; Burkholder NT; Robinson MR; Mehaffey MR; Sipe SN; Yang W; Prescott NA; Kathuria KR; Liu Z; Brodbelt JS; Zhang Y Elife; 2019 Aug; 8():. PubMed ID: 31385803 [TBL] [Abstract][Full Text] [Related]
7. Herpes Simplex Virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation. Zaborowska J; Baumli S; Laitem C; O'Reilly D; Thomas PH; O'Hare P; Murphy S PLoS One; 2014; 9(9):e107654. PubMed ID: 25233083 [TBL] [Abstract][Full Text] [Related]
8. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146 [TBL] [Abstract][Full Text] [Related]
9. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Qiu H; Hu C; Hinnebusch AG Mol Cell; 2009 Mar; 33(6):752-62. PubMed ID: 19328068 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Ivaldi MS; Karam CS; Corces VG Genes Dev; 2007 Nov; 21(21):2818-31. PubMed ID: 17942706 [TBL] [Abstract][Full Text] [Related]
12. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. Kim JB; Sharp PA J Biol Chem; 2001 Apr; 276(15):12317-23. PubMed ID: 11145967 [TBL] [Abstract][Full Text] [Related]
13. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Bartkowiak B; Liu P; Phatnani HP; Fuda NJ; Cooper JJ; Price DH; Adelman K; Lis JT; Greenleaf AL Genes Dev; 2010 Oct; 24(20):2303-16. PubMed ID: 20952539 [TBL] [Abstract][Full Text] [Related]
14. Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. Jeong J; Verheyden JM; Kimble J PLoS Genet; 2011 Mar; 7(3):e1001348. PubMed ID: 21455289 [TBL] [Abstract][Full Text] [Related]
15. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Czudnochowski N; Bösken CA; Geyer M Nat Commun; 2012 May; 3():842. PubMed ID: 22588304 [TBL] [Abstract][Full Text] [Related]
16. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Ni Z; Saunders A; Fuda NJ; Yao J; Suarez JR; Webb WW; Lis JT Mol Cell Biol; 2008 Feb; 28(3):1161-70. PubMed ID: 18070927 [TBL] [Abstract][Full Text] [Related]
17. CDK12 globally stimulates RNA polymerase II transcription elongation and carboxyl-terminal domain phosphorylation. Tellier M; Zaborowska J; Caizzi L; Mohammad E; Velychko T; Schwalb B; Ferrer-Vicens I; Blears D; Nojima T; Cramer P; Murphy S Nucleic Acids Res; 2020 Aug; 48(14):7712-7727. PubMed ID: 32805052 [TBL] [Abstract][Full Text] [Related]
18. A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb. Zhang F; Barboric M; Blackwell TK; Peterlin BM Genes Dev; 2003 Mar; 17(6):748-58. PubMed ID: 12651893 [TBL] [Abstract][Full Text] [Related]
19. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Boehm AK; Saunders A; Werner J; Lis JT Mol Cell Biol; 2003 Nov; 23(21):7628-37. PubMed ID: 14560008 [TBL] [Abstract][Full Text] [Related]
20. P-TEFb, the super elongation complex and mediator regulate a subset of non-paused genes during early Drosophila embryo development. Dahlberg O; Shilkova O; Tang M; Holmqvist PH; Mannervik M PLoS Genet; 2015 Feb; 11(2):e1004971. PubMed ID: 25679530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]