These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 23903233)
1. Serotonergic modulation of glutamate neurotransmission as a strategy for treating depression and cognitive dysfunction. Pehrson AL; Sanchez C CNS Spectr; 2014 Apr; 19(2):121-33. PubMed ID: 23903233 [TBL] [Abstract][Full Text] [Related]
2. Regional distribution of serotonergic receptors: a systems neuroscience perspective on the downstream effects of the multimodal-acting antidepressant vortioxetine on excitatory and inhibitory neurotransmission. Pehrson AL; Jeyarajah T; Sanchez C CNS Spectr; 2016 Apr; 21(2):162-83. PubMed ID: 26250622 [TBL] [Abstract][Full Text] [Related]
3. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission. Riga MS; Sánchez C; Celada P; Artigas F Neuropharmacology; 2016 Sep; 108():73-81. PubMed ID: 27106166 [TBL] [Abstract][Full Text] [Related]
4. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Sanchez C; Asin KE; Artigas F Pharmacol Ther; 2015 Jan; 145():43-57. PubMed ID: 25016186 [TBL] [Abstract][Full Text] [Related]
6. Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Guo JD; Rainnie DG Neuroscience; 2010 Feb; 165(4):1390-401. PubMed ID: 19963045 [TBL] [Abstract][Full Text] [Related]
7. Serotonergic mechanisms involved in antidepressant-like responses evoked by GLT-1 blockade in rat infralimbic cortex. Gasull-Camós J; Martínez-Torres S; Tarrés-Gatius M; Ozaita A; Artigas F; Castañé A Neuropharmacology; 2018 Sep; 139():41-51. PubMed ID: 29940206 [TBL] [Abstract][Full Text] [Related]
8. The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. Köhler S; Cierpinsky K; Kronenberg G; Adli M J Psychopharmacol; 2016 Jan; 30(1):13-22. PubMed ID: 26464458 [TBL] [Abstract][Full Text] [Related]
9. Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review. du Jardin KG; Müller HK; Elfving B; Dale E; Wegener G; Sanchez C Prog Neuropsychopharmacol Biol Psychiatry; 2016 Nov; 71():27-38. PubMed ID: 27262695 [TBL] [Abstract][Full Text] [Related]
10. Histamine may contribute to vortioxetine's procognitive effects; possibly through an orexigenic mechanism. Smagin GN; Song D; Budac DP; Waller JA; Li Y; Pehrson AL; Sánchez C Prog Neuropsychopharmacol Biol Psychiatry; 2016 Jul; 68():25-30. PubMed ID: 26945513 [TBL] [Abstract][Full Text] [Related]
11. Glutamatergic drive of the dorsal raphe nucleus. Soiza-Reilly M; Commons KG J Chem Neuroanat; 2011 Jul; 41(4):247-55. PubMed ID: 21550397 [TBL] [Abstract][Full Text] [Related]
12. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pham TH; Gardier AM Pharmacol Ther; 2019 Jul; 199():58-90. PubMed ID: 30851296 [TBL] [Abstract][Full Text] [Related]
13. Metabotropic glutamate receptors in the control of mood disorders. Witkin JM; Marek GJ; Johnson BG; Schoepp DD CNS Neurol Disord Drug Targets; 2007 Apr; 6(2):87-100. PubMed ID: 17430147 [TBL] [Abstract][Full Text] [Related]
14. The multimodal antidepressant vortioxetine may facilitate pyramidal cell firing by inhibition of 5-HT Dale E; Grunnet M; Pehrson AL; Frederiksen K; Larsen PH; Nielsen J; Stensbøl TB; Ebert B; Yin H; Lu D; Liu H; Jensen TN; Yang CR; Sanchez C Brain Res; 2018 Jun; 1689():1-11. PubMed ID: 29274875 [TBL] [Abstract][Full Text] [Related]
15. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission. Sengupta A; Bocchio M; Bannerman DM; Sharp T; Capogna M J Neurosci; 2017 Feb; 37(7):1785-1796. PubMed ID: 28087766 [TBL] [Abstract][Full Text] [Related]
16. A single dose of vortioxetine, but not ketamine or fluoxetine, increases plasticity-related gene expression in the rat frontal cortex. du Jardin KG; Müller HK; Sanchez C; Wegener G; Elfving B Eur J Pharmacol; 2016 Sep; 786():29-35. PubMed ID: 27235984 [TBL] [Abstract][Full Text] [Related]
17. A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery. Li YF Pharmacol Ther; 2020 Apr; 208():107494. PubMed ID: 31991195 [TBL] [Abstract][Full Text] [Related]
18. Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. López-Gil X; Artigas F; Adell A Curr Pharm Des; 2010; 16(5):502-15. PubMed ID: 19909228 [TBL] [Abstract][Full Text] [Related]
19. Serotonin depletion produces long lasting increase in striatal glutamatergic transmission. Di Cara B; Dusticier N; Forni C; Lievens JC; Daszuta A J Neurochem; 2001 Jul; 78(2):240-8. PubMed ID: 11461959 [TBL] [Abstract][Full Text] [Related]
20. Does increasing the ratio of AMPA-to-NMDA receptor mediated neurotransmission engender antidepressant action? Studies in the mouse forced swim and tail suspension tests. Andreasen JT; Gynther M; Rygaard A; Bøgelund T; Nielsen SD; Clausen RP; Mogensen J; Pickering DS Neurosci Lett; 2013 Jun; 546():6-10. PubMed ID: 23643996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]