BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23903409)

  • 1. Self-assembly of cationic surfactants on the carbon nanotube surface: insights from molecular dynamics simulations.
    Poorgholami-Bejarpasi N; Sohrabi B
    J Mol Model; 2013 Oct; 19(10):4319-35. PubMed ID: 23903409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Gemini Surfactants' Self-Assembly on Graphene Nanosheets: Insights from Molecular Dynamic Simulation.
    Poorsargol M; Sohrabi B; Dehestani M
    J Phys Chem A; 2018 Apr; 122(15):3873-3885. PubMed ID: 29580056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions.
    Bai Y; Lin D; Wu F; Wang Z; Xing B
    Chemosphere; 2010 Apr; 79(4):362-7. PubMed ID: 20206374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of anionic and non-ionic surfactants on carbon nanotubes in water with dissipative particle dynamics simulation.
    Vo MD; Shiau B; Harwell JH; Papavassiliou DV
    J Chem Phys; 2016 May; 144(20):204701. PubMed ID: 27250319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion of carbon nanotubes using mixed surfactants: experimental and molecular dynamics simulation studies.
    Sohrabi B; Poorgholami-Bejarpasi N; Nayeri N
    J Phys Chem B; 2014 Mar; 118(11):3094-103. PubMed ID: 24555914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unfolding and Refolding of Protein by a Combination of Ionic and Nonionic Surfactants.
    Saha D; Ray D; Kohlbrecher J; Aswal VK
    ACS Omega; 2018 Jul; 3(7):8260-8270. PubMed ID: 31458962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Hydrophobic Tail Length Variation on Surfactant-Mediated Protein Stabilization.
    Hanson MG; Katz JS; Ma H; Putterman M; Yezer BA; Petermann O; Reineke TM
    Mol Pharm; 2020 Nov; 17(11):4302-4311. PubMed ID: 33054234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment mechanism of semiconducting single-walled carbon nanotubes by surfactant amines.
    Ju SY; Utz M; Papadimitrakopoulos F
    J Am Chem Soc; 2009 May; 131(19):6775-84. PubMed ID: 19397291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in Chirality of Semiconducting Single-Walled Carbon Nanotubes Can Overcome Anionic Surfactant Stabilization: A Systematic Study of Aggregation Kinetics.
    Khan IA; Flora JR; Nabiul Afrooz AR; Aich N; Schierz PA; Ferguson PL; Sabo-Attwood T; Saleh NB
    Environ Chem; 2015 May; 12(6):652-661. PubMed ID: 26855611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of doxorubicin adsorption on a bundle of functionalized CNT.
    Izadyar A; Farhadian N; Chenarani N
    J Biomol Struct Dyn; 2016 Aug; 34(8):1797-805. PubMed ID: 26375507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SDS surfactants on carbon nanotubes: aggregate morphology.
    Tummala NR; Striolo A
    ACS Nano; 2009 Mar; 3(3):595-602. PubMed ID: 19228060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; AƤritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q; Liu J
    Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes.
    Shi B; Zhuang X; Yan X; Lu J; Tang H
    J Environ Sci (China); 2010; 22(8):1195-202. PubMed ID: 21179958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of adsorption of DNA on carbon nanotubes.
    Zhao X; Johnson JK
    J Am Chem Soc; 2007 Aug; 129(34):10438-45. PubMed ID: 17676840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical composition-dependent removal of cationic surfactants by carbon nanotubes.
    Gao Q; Wu F; Hu J; Chen W; Zhang X; Guo X; Wang B; Wang X
    Sci Total Environ; 2020 May; 716():137017. PubMed ID: 32036136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of the adsorption of ionic surfactants onto hydrophilic silica using polyelectrolytes.
    Penfold J; Tucker I; Staples E; Thomas RK
    Langmuir; 2004 Aug; 20(17):7177-82. PubMed ID: 15301503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield DNA-templated assembly of surfactant-wrapped carbon nanotubes.
    Xin H; Woolley AT
    Nanotechnology; 2005 Oct; 16(10):2238-41. PubMed ID: 20818002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular perspective on diazonium adsorption for controllable functionalization of single-walled carbon nanotubes in aqueous surfactant solutions.
    Lin S; Hilmer AJ; Mendenhall JD; Strano MS; Blankschtein D
    J Am Chem Soc; 2012 May; 134(19):8194-204. PubMed ID: 22530647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.