These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2390376)

  • 1. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum.
    Nakahara H; Bruder SP; Haynesworth SE; Holecek JJ; Baber MA; Goldberg VM; Caplan AI
    Bone; 1990; 11(3):181-8. PubMed ID: 2390376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    J Orthop Res; 1991 Jul; 9(4):465-76. PubMed ID: 2045973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo osteochondrogenic potential of cultured cells derived from the periosteum.
    Nakahara H; Bruder SP; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1990 Oct; (259):223-32. PubMed ID: 2208860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1992 Mar; (276):291-8. PubMed ID: 1537169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells.
    Nakahara H; Dennis JE; Bruder SP; Haynesworth SE; Lennon DP; Caplan AI
    Exp Cell Res; 1991 Aug; 195(2):492-503. PubMed ID: 2070830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of periosteal cells in muscle. An experimental study using the diffusion chamber method.
    Jaroma HJ; Ritsilä VA
    Scand J Plast Reconstr Surg Hand Surg; 1988; 22(3):193-8. PubMed ID: 3252446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteochondral differentiation and the emergence of stage-specific osteogenic cell-surface molecules by bone marrow cells in diffusion chambers.
    Bruder SP; Gazit D; Passi-Even L; Bab I; Caplan AI
    Bone Miner; 1990 Nov; 11(2):141-51. PubMed ID: 2268743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrogenic cell differentiation from membrane bone periostea.
    Fang J; Hall BK
    Anat Embryol (Berl); 1997 Nov; 196(5):349-62. PubMed ID: 9406838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo.
    Ashton BA; Allen TD; Howlett CR; Eaglesom CC; Hattori A; Owen M
    Clin Orthop Relat Res; 1980 Sep; (151):294-307. PubMed ID: 7418319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of diffusion chamber pore size on differentiation and proliferation of periosteal cells. An experimental study.
    Jaroma HJ; Ritsilä VA
    Clin Orthop Relat Res; 1988 Nov; (236):258-64. PubMed ID: 3180579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of bone formed by heterotopic periosteal autografts.
    Nishimura T; Simmons DJ; Mainous EG
    J Oral Maxillofac Surg; 1997 Nov; 55(11):1265-8. PubMed ID: 9371118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells.
    Gruber R; Mayer C; Bobacz K; Krauth MT; Graninger W; Luyten FP; Erlacher L
    Endocrinology; 2001 May; 142(5):2087-94. PubMed ID: 11316776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cells with osteogenic potential from human marrow.
    Haynesworth SE; Goshima J; Goldberg VM; Caplan AI
    Bone; 1992; 13(1):81-8. PubMed ID: 1581112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chondrogenic potential of periosteum decreases with age.
    O'Driscoll SW; Saris DB; Ito Y; Fitzimmons JS
    J Orthop Res; 2001 Jan; 19(1):95-103. PubMed ID: 11332626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periosteum responds to dynamic fluid pressure by proliferating in vitro.
    Saris DB; Sanyal A; An KN; Fitzsimmons JS; O'Driscoll SW
    J Orthop Res; 1999 Sep; 17(5):668-77. PubMed ID: 10569475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells.
    Gundle R; Joyner CJ; Triffitt JT
    Bone; 1995 Jun; 16(6):597-601. PubMed ID: 7669435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells.
    Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H
    J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteochondral progenitor cells in acute and chronic canine nonunions.
    Boyan BD; Caplan AI; Heckman JD; Lennon DP; Ehler W; Schwartz Z
    J Orthop Res; 1999 Mar; 17(2):246-55. PubMed ID: 10221842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clonal growth of human articular cartilage and the functional role of the periosteum in chondrogenesis.
    Brittberg M; Sjögren-Jansson E; Thornemo M; Faber B; Tarkowski A; Peterson L; Lindahl A
    Osteoarthritis Cartilage; 2005 Feb; 13(2):146-53. PubMed ID: 15694576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.