These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23903960)

  • 1. Nano- and microstructuration of supramolecular materials driven by H-bonded uracil·2,6-diamidopyridine complexes.
    Marangoni T; Bonifazi D
    Nanoscale; 2013 Oct; 5(19):8837-51. PubMed ID: 23903960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigid dimers formed through strong interdigitated H-bonds yield compact 1D supramolecular helical polymers.
    Ciesielski A; Stefankiewicz AR; Hanke F; Persson M; Lehn JM; Samorì P
    Small; 2011 Feb; 7(3):342-50. PubMed ID: 21294263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of supramolecular H-bonded nanopolygons via self-assembly of programmed molecular modules.
    Llanes-Pallas A; Palma CA; Piot L; Belbakra A; Listorti A; Prato M; Samorì P; Armaroli N; Bonifazi D
    J Am Chem Soc; 2009 Jan; 131(2):509-20. PubMed ID: 19105700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Ordering and Phase Segregation in Hydrogen-Bonded Polymers.
    Chen S; Binder WH
    Acc Chem Res; 2016 Jul; 49(7):1409-20. PubMed ID: 27314602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoresponsive self-assembly and self-organization of hydrogen-bonded supramolecular tapes.
    Yagai S; Iwashima T; Kishikawa K; Nakahara S; Karatsu T; Kitamura A
    Chemistry; 2006 May; 12(15):3984-94. PubMed ID: 16550621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of N3-substituted xanthines in the solid state and at the solid-liquid interface.
    Ciesielski A; Haar S; Bényei A; Paragi G; Guerra CF; Bickelhaupt FM; Masiero S; Szolomájer J; Samorì P; Spada GP; Kovács L
    Langmuir; 2013 Jun; 29(24):7283-90. PubMed ID: 23278633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes.
    Llanes-Pallas A; Yoosaf K; Traboulsi H; Mohanraj J; Seldrum T; Dumont J; Minoia A; Lazzaroni R; Armaroli N; Bonifazi D
    J Am Chem Soc; 2011 Oct; 133(39):15412-24. PubMed ID: 21830817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchised luminescent organic architectures: design, synthesis, self-assembly, self-organisation and functions.
    Maggini L; Bonifazi D
    Chem Soc Rev; 2012 Jan; 41(1):211-41. PubMed ID: 21748186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal vinylidene complexes as supramolecular building blocks: nucleobase-mediated self-assembly of crystals with hexagonal symmetry.
    Cowley MJ; Lynam JM; Whitwood AC
    Dalton Trans; 2007 Oct; (39):4427-38. PubMed ID: 17909654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-ligand-containing polymers: terpyridine as the supramolecular unit.
    Shunmugam R; Gabriel GJ; Aamer KA; Tew GN
    Macromol Rapid Commun; 2010 May; 31(9-10):784-93. PubMed ID: 21590971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.
    Han YF; Chen WQ; Wang HB; Yuan YX; Wu NN; Song XZ; Yang L
    Chemistry; 2014 Dec; 20(51):16980-6. PubMed ID: 25339060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
    Li J; Loh XJ
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1000-17. PubMed ID: 18413280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions in supramolecular complexes involving arenes: experimental studies.
    Schneider HJ
    Acc Chem Res; 2013 Apr; 46(4):1010-9. PubMed ID: 22853652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cucurbit[8]uril-based supramolecular polymers.
    Liu Y; Yang H; Wang Z; Zhang X
    Chem Asian J; 2013 Aug; 8(8):1626-32. PubMed ID: 23589513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly driven by an aromatic primary amide motif.
    Seo M; Park J; Kim SY
    Org Biomol Chem; 2012 Jul; 10(28):5332-42. PubMed ID: 22592349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding sites on the outside of metallo-supramolecular architectures; engineering coordination polymers from discrete architectures.
    Pascu M; Tuna F; Kolodziejczyk E; Pascu GI; Clarkson G; Hannon MJ
    Dalton Trans; 2004 May; (10):1546-55. PubMed ID: 15252603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers.
    Schubert US; Eschbaumer C
    Angew Chem Int Ed Engl; 2002 Aug; 41(16):2892-926. PubMed ID: 12203414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition.
    Wang MX
    Acc Chem Res; 2012 Feb; 45(2):182-95. PubMed ID: 21834499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From molecular to macroscopic engineering: shaping hydrogen-bonded organic nanomaterials.
    Yoosaf K; Llanes-Pallas A; Marangoni T; Belbakra A; Marega R; Botek E; Champagne B; Bonifazi D; Armaroli N
    Chemistry; 2011 Mar; 17(11):3262-73. PubMed ID: 21308805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.