These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 2390415)
41. Timing of the initiation of rRNA gene expression and nucleolar formation in cleavage embryos arrested by cytochalasin B and podophyllotoxin and in cytoplasm-extracted embryos of Xenopus laevis. Shiokawa K; Takeichi T; Miyata S; Tashiro K; Matsuda K Cytobios; 1985; 43(174S):319-34. PubMed ID: 4075851 [TBL] [Abstract][Full Text] [Related]
42. Factors affecting the uptake of DMSO by the eggs and embryos of medaka, Oryzias latipes. Routray P; Suzuki T; Strüssmann CA; Takai R Theriogenology; 2002 Nov; 58(8):1483-96. PubMed ID: 12374119 [TBL] [Abstract][Full Text] [Related]
43. Intracellular free calcium oscillations in normal and cleavage-blocked embryos and artificially activated eggs of Xenopus laevis. Keating TJ; Cork RJ; Robinson KR J Cell Sci; 1994 Aug; 107 ( Pt 8)():2229-37. PubMed ID: 7983182 [TBL] [Abstract][Full Text] [Related]
44. The embryonic development of Xenopus laevis under a low frequency electric field. Boga A; Binokay S; Emre M; Sertdemir Y In Vitro Cell Dev Biol Anim; 2012 Jun; 48(6):385-91. PubMed ID: 22723004 [TBL] [Abstract][Full Text] [Related]
45. Binding of 63Ni (II) to ultrafiltrable constituents of rabbit serum in vivo and in vitro. Asato N; Soestbergen Mv; Sunderman FW Clin Chem; 1975 Apr; 21(4):521-7. PubMed ID: 1116286 [TBL] [Abstract][Full Text] [Related]
46. Sea urchin embryos exposed to thalidomide during early cleavage exhibit abnormal morphogenesis later in development. Reichard-Brown JL; Spinner H; McBride K Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):496-505. PubMed ID: 20025048 [TBL] [Abstract][Full Text] [Related]
47. Effects of estrogenic hormones on early development of Xenopus laevis. Nishimura N; Fukazawa Y; Uchiyama H; Iguchi T J Exp Zool; 1997 Jul; 278(4):221-33. PubMed ID: 9206031 [TBL] [Abstract][Full Text] [Related]
48. Uptake and depuration of 63Ni by Mytilus edulis. Punt AG; Millward GE; Jones MB Sci Total Environ; 1998 Jun; 214():71-8. PubMed ID: 9646518 [TBL] [Abstract][Full Text] [Related]
49. Effect of thiuram sulphides on the uptake and distribution of nickel in pregnant and non-pregnant mice. Jasim S; Tjälve H Toxicology; 1984 Sep; 32(4):297-313. PubMed ID: 6091296 [TBL] [Abstract][Full Text] [Related]
50. Effects of depleted uranium on survival, growth, and metamorphosis in the African clawed frog (Xenopus laevis). Mitchell SE; Caldwell CA; Gonzales G; Gould WR; Arimoto R J Toxicol Environ Health A; 2005 Jun 11-25; 68(11-12):951-65. PubMed ID: 16020186 [TBL] [Abstract][Full Text] [Related]
51. [Energy-dependent 63Ni-uptake by Alcaligenes eutrophus strains H1 and H16 (author's transl)]. Tabillion R; Kaltwasser H Arch Microbiol; 1977 May; 113(1-2):145-51. PubMed ID: 889383 [TBL] [Abstract][Full Text] [Related]
52. Xenopus laevis embryos can establish their spatial bilateral symmetrical body pattern without gravity. Ubbels GA; Reijnen M; Meijerink J; Narraway J Adv Space Res; 1994; 14(8):257-69. PubMed ID: 11537925 [TBL] [Abstract][Full Text] [Related]
53. FETAX Assay for Evaluation of Developmental Toxicity. Mouche I; Malésic L; Gillardeaux O Methods Mol Biol; 2017; 1641():311-324. PubMed ID: 28748472 [TBL] [Abstract][Full Text] [Related]
54. Toxic and teratogenic effects of selected aromatic amines on embryos of the amphibian Xenopus laevis. Davis KR; Schultz TW; Dumont JN Arch Environ Contam Toxicol; 1981; 10(3):371-91. PubMed ID: 7259304 [TBL] [Abstract][Full Text] [Related]
55. Teratogenic effects of five anticancer drugs on Xenopus laevis embryos. Isidori M; Piscitelli C; Russo C; Smutná M; Bláha L Ecotoxicol Environ Saf; 2016 Nov; 133():90-6. PubMed ID: 27423131 [TBL] [Abstract][Full Text] [Related]
56. Altered development of Xenopus embryos in a hypogeomagnetic field. Mo WC; Liu Y; Cooper HM; He RQ Bioelectromagnetics; 2012 Apr; 33(3):238-46. PubMed ID: 21853450 [TBL] [Abstract][Full Text] [Related]
57. Persistence and expression of circular DNAs encoding Drosophila amylase, bacterial chloramphenicol acetyltransferase, and others in Xenopus laevis embryos. Shiokawa K; Yamazaki T; Fu YC; Tashiro K; Tsurugi K; Motizuki M; Ikegami Y; Araki E; Andoh T; Hosokawa K Cell Struct Funct; 1989 Apr; 14(2):261-9. PubMed ID: 2472899 [TBL] [Abstract][Full Text] [Related]
58. Transport and subcellular distribution of nickel in the olfactory system of pikes and rats. Tallkvist J; Henriksson J; d'Argy R; Tjälve H Toxicol Sci; 1998 Jun; 43(2):196-203. PubMed ID: 9710961 [TBL] [Abstract][Full Text] [Related]
59. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes. Holt BD; Shawky JH; Dahl KN; Davidson LA; Islam MF J Appl Toxicol; 2016 Apr; 36(4):579-85. PubMed ID: 26153061 [TBL] [Abstract][Full Text] [Related]
60. Inositol transport in preimplantation rabbit embryos: effects of embryo stage, sodium, osmolality and metabolic inhibitors. Warner SM; Conlon FV; Kane MT Reproduction; 2003 Apr; 125(4):479-93. PubMed ID: 12683919 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]