BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 23904182)

  • 1. A step toward development of printable dosage forms for poorly soluble drugs.
    Raijada D; Genina N; Fors D; Wisaeus E; Peltonen J; Rantanen J; Sandler N
    J Pharm Sci; 2013 Oct; 102(10):3694-704. PubMed ID: 23904182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging.
    Markl D; Zeitler JA; Rasch C; Michaelsen MH; Müllertz A; Rantanen J; Rades T; Bøtker J
    Pharm Res; 2017 May; 34(5):1037-1052. PubMed ID: 28004318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform.
    Racaniello GF; Silvestri T; Pistone M; D'Amico V; Arduino I; Denora N; Lopedota AA
    J Pharm Sci; 2024 Jul; 113(7):1726-1748. PubMed ID: 38582283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium.
    Eleftheriadis GK; Monou PK; Bouropoulos N; Fatouros DG
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29789468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing.
    Queraltó A; Banchewski J; Pacheco A; Gupta K; Saltarelli L; Garcia D; Alcalde N; Mocuta C; Ricart S; Pino F; Obradors X; Puig T
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9101-9112. PubMed ID: 33576610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo deposition of poorly soluble drugs.
    Lou Z; Mu C; Corpstein CD; Li T
    Adv Drug Deliv Rev; 2024 Jun; 211():115358. PubMed ID: 38851590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Printing technologies in fabrication of drug delivery systems.
    Kolakovic R; Viitala T; Ihalainen P; Genina N; Peltonen J; Sandler N
    Expert Opin Drug Deliv; 2013 Dec; 10(12):1711-23. PubMed ID: 24256326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.
    Khaled SA; Burley JC; Alexander MR; Roberts CJ
    Int J Pharm; 2014 Jan; 461(1-2):105-11. PubMed ID: 24280018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges.
    Alhnan MA; Okwuosa TC; Sadia M; Wan KW; Ahmed W; Arafat B
    Pharm Res; 2016 Aug; 33(8):1817-32. PubMed ID: 27194002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes.
    Krampe R; Visser JC; Frijlink HW; Breitkreutz J; Woerdenbag HJ; Preis M
    Expert Opin Drug Deliv; 2016; 13(4):493-506. PubMed ID: 26559519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspective: Concepts of printing technologies for oral film formulations.
    Preis M; Breitkreutz J; Sandler N
    Int J Pharm; 2015 Oct; 494(2):578-584. PubMed ID: 25683143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Simvastatin-Loaded Particles Using Spray Drying Method for Ex Tempore Preparation of Cartridges for 2D Printing Technology.
    Sterle Zorec B; Dreu R
    Pharmaceutics; 2023 Aug; 15(9):. PubMed ID: 37765190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of amorphous solid dispersions: A comparison of fused deposition modeling and drop-on-powder printing.
    Gottschalk N; Bogdahn M; Quodbach J
    Int J Pharm X; 2023 Dec; 5():100179. PubMed ID: 37025187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing.
    Elbl J; Veselý M; Blaháčková D; Ondruš J; Kulich P; Mašková E; Mašek J; Gajdziok J
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36840036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drop-on-powder 3D printing of amorphous high dose oral dosage forms: Process development, opportunities and printing limitations.
    Gottschalk N; Burkard A; Quodbach J; Bogdahn M
    Int J Pharm X; 2023 Dec; 5():100151. PubMed ID: 36687376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing of pharmaceuticals: approach from bench scale to commercial development.
    Pawar R; Pawar A
    Futur J Pharm Sci; 2022; 8(1):48. PubMed ID: 36466365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymers in Technologies of Additive and Inkjet Printing of Dosage Formulations.
    Blynskaya EV; Tishkov SV; Alekseev KV; Vetcher AA; Marakhova AI; Rejepov DT
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Nanosuspension Formulations Compatible with Inkjet Printing for the Convenient and Precise Dispensing of Poorly Soluble Drugs.
    Leung DH
    Pharmaceutics; 2022 Feb; 14(2):. PubMed ID: 35214180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-Enriched Edible Pharmaceuticals (DEEP) with Bespoke Design, Dose and Drug Release.
    Chao M; Öblom H; Cornett C; Bøtker J; Rantanen J; Sporrong SK; Genina N
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printing Methods in the Production of Orodispersible Films.
    Gupta MS; Kumar TP; Davidson R; Kuppu GR; Pathak K; Gowda DV
    AAPS PharmSciTech; 2021 Apr; 22(3):129. PubMed ID: 33835297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.