BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 23904475)

  • 1. PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB.
    Wei H; Wang B; Miyagi M; She Y; Gopalan B; Huang DB; Ghosh G; Stark GR; Lu T
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13516-21. PubMed ID: 23904475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor necrosis factor (TNF)-α induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)-κB p65 methylation.
    Harris DP; Bandyopadhyay S; Maxwell TJ; Willard B; DiCorleto PE
    J Biol Chem; 2014 May; 289(22):15328-39. PubMed ID: 24753255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PRMT5-Mediated Methylation of NF-κB p65 at Arg174 Is Required for Endothelial CXCL11 Gene Induction in Response to TNF-α and IFN-γ Costimulation.
    Harris DP; Chandrasekharan UM; Bandyopadhyay S; Willard B; DiCorleto PE
    PLoS One; 2016; 11(2):e0148905. PubMed ID: 26901772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of a PRMT5/NF-κB Axis by Phosphorylation of PRMT5 at Serine 15 in Colorectal Cancer.
    Hartley AV; Wang B; Jiang G; Wei H; Sun M; Prabhu L; Martin M; Safa A; Sun S; Liu Y; Lu T
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32456215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PRMT5-mediated methylation of YBX1 regulates NF-κB activity in colorectal cancer.
    Hartley AV; Wang B; Mundade R; Jiang G; Sun M; Wei H; Sun S; Liu Y; Lu T
    Sci Rep; 2020 Sep; 10(1):15934. PubMed ID: 32985589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coactivator-associated arginine methyltransferase-1 enhances nuclear factor-kappaB-mediated gene transcription through methylation of histone H3 at arginine 17.
    Miao F; Li S; Chavez V; Lanting L; Natarajan R
    Mol Endocrinol; 2006 Jul; 20(7):1562-73. PubMed ID: 16497732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric arginine dimethylation of RelA provides a repressive mark to modulate TNFα/NF-κB response.
    Reintjes A; Fuchs JE; Kremser L; Lindner HH; Liedl KR; Huber LA; Valovka T
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4326-31. PubMed ID: 27051065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Novel Serine 316 Phosphorylation of the p65 Subunit of NF-κB in Differential Gene Regulation.
    Wang B; Wei H; Prabhu L; Zhao W; Martin M; Hartley AV; Lu T
    J Biol Chem; 2015 Aug; 290(33):20336-47. PubMed ID: 26082493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65.
    Lu T; Jackson MW; Wang B; Yang M; Chance MR; Miyagi M; Gudkov AV; Stark GR
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):46-51. PubMed ID: 20080798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of NF-kappaB activity through lysine monomethylation of p65.
    Ea CK; Baltimore D
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18972-7. PubMed ID: 19864627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-beta induces p65 acetylation to enhance bacteria-induced NF-kappaB activation.
    Ishinaga H; Jono H; Lim JH; Kweon SM; Xu H; Ha UH; Xu H; Koga T; Yan C; Feng XH; Chen LF; Li JD
    EMBO J; 2007 Feb; 26(4):1150-62. PubMed ID: 17268554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond.
    Stopa N; Krebs JE; Shechter D
    Cell Mol Life Sci; 2015 Jun; 72(11):2041-59. PubMed ID: 25662273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel NF-kappaB pathway involving IKKbeta and p65/RelA Ser-536 phosphorylation results in p53 Inhibition in the absence of NF-kappaB transcriptional activity.
    Jeong SJ; Pise-Masison CA; Radonovich MF; Park HU; Brady JN
    J Biol Chem; 2005 Mar; 280(11):10326-32. PubMed ID: 15611068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core.
    Lubyova B; Hodek J; Zabransky A; Prouzova H; Hubalek M; Hirsch I; Weber J
    PLoS One; 2017; 12(10):e0186982. PubMed ID: 29065155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65.
    Saha RN; Jana M; Pahan K
    J Immunol; 2007 Nov; 179(10):7101-9. PubMed ID: 17982102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression.
    Ashburner BP; Westerheide SD; Baldwin AS
    Mol Cell Biol; 2001 Oct; 21(20):7065-77. PubMed ID: 11564889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription.
    Spengler ML; Kuropatwinski KK; Comas M; Gasparian AV; Fedtsova N; Gleiberman AS; Gitlin II; Artemicheva NM; Deluca KA; Gudkov AV; Antoch MP
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):E2457-65. PubMed ID: 22895791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of iNOS gene transcription by IL-1β and IFN-γ requires a coactivator exchange mechanism.
    Burke SJ; Updegraff BL; Bellich RM; Goff MR; Lu D; Minkin SC; Karlstad MD; Collier JJ
    Mol Endocrinol; 2013 Oct; 27(10):1724-42. PubMed ID: 24014650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Karyopherin Alpha 2 Promotes the Inflammatory Response in Rat Pancreatic Acinar Cells Via Facilitating NF-κB Activation.
    Cai Y; Shen Y; Gao L; Chen M; Xiao M; Huang Z; Zhang D
    Dig Dis Sci; 2016 Mar; 61(3):747-57. PubMed ID: 26526450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NF-κB: Regulation by Methylation.
    Lu T; Stark GR
    Cancer Res; 2015 Sep; 75(18):3692-5. PubMed ID: 26337909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.