These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 23904484)
41. Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. Ceresa C; Tessarolo F; Caola I; Nollo G; Cavallo M; Rinaldi M; Fracchia L J Appl Microbiol; 2015 May; 118(5):1116-25. PubMed ID: 25644534 [TBL] [Abstract][Full Text] [Related]
42. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Hsu CC; Lai WL; Chuang KC; Lee MH; Tsai YC Med Mycol; 2013 Jul; 51(5):473-82. PubMed ID: 23210679 [TBL] [Abstract][Full Text] [Related]
43. Dermaseptin-S1 decreases Candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. Belmadani A; Semlali A; Rouabhia M J Appl Microbiol; 2018 Jul; 125(1):72-83. PubMed ID: 29476689 [TBL] [Abstract][Full Text] [Related]
44. Small-Molecule Morphogenesis Modulators Enhance the Ability of 14-Helical β-Peptides To Prevent Candida albicans Biofilm Formation. Rodríguez López AL; Lee MR; Wang NB; Dunn KK; Sanchez H; Raman N; Andes DR; Lynn DM; Palecek SP Antimicrob Agents Chemother; 2019 Sep; 63(9):. PubMed ID: 31209011 [No Abstract] [Full Text] [Related]
45. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Messier C; Grenier D Mycoses; 2011 Nov; 54(6):e801-6. PubMed ID: 21615543 [TBL] [Abstract][Full Text] [Related]
46. Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans. Yang LF; Liu X; Lv LL; Ma ZM; Feng XC; Ma TH J Mycol Med; 2018 Mar; 28(1):36-44. PubMed ID: 29477784 [TBL] [Abstract][Full Text] [Related]
47. Anti-biofilm activity of the metabolites of Streptomyces chrestomyceticus strain ADP4 against Candida albicans. Srivastava V; Dubey AK J Biosci Bioeng; 2016 Oct; 122(4):434-40. PubMed ID: 27117484 [TBL] [Abstract][Full Text] [Related]
49. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Manoharan RK; Lee JH; Kim YG; Kim SI; Lee J Biofouling; 2017 Feb; 33(2):143-155. PubMed ID: 28155334 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Messier C; Epifano F; Genovese S; Grenier D Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508 [TBL] [Abstract][Full Text] [Related]
51. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11. Morici P; Fais R; Rizzato C; Tavanti A; Lupetti A PLoS One; 2016; 11(11):e0167470. PubMed ID: 27902776 [TBL] [Abstract][Full Text] [Related]
52. Resveratrol impaired the morphological transition of Candida albicans under various hyphae-inducing conditions. Okamoto-Shibayama K; Sato Y; Azuma T J Microbiol Biotechnol; 2010 May; 20(5):942-5. PubMed ID: 20519919 [TBL] [Abstract][Full Text] [Related]
53. Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Toenjes KA; Munsee SM; Ibrahim AS; Jeffrey R; Edwards JE; Johnson DI Antimicrob Agents Chemother; 2005 Mar; 49(3):963-72. PubMed ID: 15728890 [TBL] [Abstract][Full Text] [Related]
55. Proteus vulgaris and Proteus mirabilis Decrease Candida albicans Biofilm Formation by Suppressing Morphological Transition to Its Hyphal Form. Lee KH; Park SJ; Choi SJ; Park JY Yonsei Med J; 2017 Nov; 58(6):1135-1143. PubMed ID: 29047237 [TBL] [Abstract][Full Text] [Related]
56. The effect of sodium hypochlorite on potential pathogenic traits of Candida albicans and other Candida species. Webb BC; Willcox MD; Thomas CJ; Harty DW; Knox KW Oral Microbiol Immunol; 1995 Dec; 10(6):334-41. PubMed ID: 8602340 [TBL] [Abstract][Full Text] [Related]
57. Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms. Banerjee M; Uppuluri P; Zhao XR; Carlisle PL; Vipulanandan G; Villar CC; López-Ribot JL; Kadosh D Eukaryot Cell; 2013 Feb; 12(2):224-32. PubMed ID: 23223035 [TBL] [Abstract][Full Text] [Related]
58. A Global Analysis of Kinase Function in Bar-Yosef H; Gildor T; Ramírez-Zavala B; Schmauch C; Weissman Z; Pinsky M; Naddaf R; Morschhäuser J; Arkowitz RA; Kornitzer D Front Cell Infect Microbiol; 2018; 8():17. PubMed ID: 29473018 [TBL] [Abstract][Full Text] [Related]
59. Inhibition of Yeast-to-Hypha Transition and Virulence of Meng L; Zhao H; Zhao S; Sun X; Zhang M; Deng Y Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30670437 [TBL] [Abstract][Full Text] [Related]
60. Antagonistic effect of Saccharomyces cerevisiae KTP and Issatchenkia occidentalis ApC on hyphal development and adhesion of Candida albicans. Lohith K; Anu-Appaiah KA Med Mycol; 2018 Nov; 56(8):1023-1032. PubMed ID: 29340656 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]